• Probes and Cantilevers

    A cantilever with a tip on its end is the main sensing component ultimately responsible for the quality of AFM imaging. The most common and at the same time very sensible scheme of data acquisition is an optical one based on registration of a laser beam reflected from the backside of the cantilever with a sectioned (position sensitive) photodiode. For better reflection the backside of cantilevers is often covered with aluminium or gold. There are a number of other deflection registration techniques and related peculiarities of cantilever construction among which piezocantilevers are worth of particular consideration [160, 161, 210, 211, 390, 921, 922, 1382]. However, this report is limited to the description of cantilevers for the optical registration scheme.

    Cantilever parameters

    • Material of the cantilever
    • Geometry of the cantilever
    • Stiffness of the cantilever
    • Resonance frequency of the cantilever
    • Q-factor

    Tip parameters

    •  Material of the tip

    • Geometrical parameters of the tip

    There are a number of tip defects, which cause artifacts. The most common of them are:

    a) Multiple peaks at the apex comprising atomic scale protrusions. Every peak during scanning contributes in the tip-sample interaction. In the simplest case of a double peak apex the features on the sample surface look double in the scans (Fig. 3, d). Absence of this defect is especially crucial when measuring single macromolecules.
    b) Blunt apex. This results in lowering of resolution power. The sharpness of the apex tends to decrease during consecutive contact mode scans of the sample surface (Fig. 3, a,b,c).
    c) Non-spherical apex. Results in geometry distortion of sample features.

    (a) 700 x 700 x 20 nm (b) 700 x 700 x 16 nm
    (c) 800 x 800 x 12 nm (d) 400 x 400 x 16 nm

    Fig. 3.  Imaging of sharp edges of CdF2 films grown in <111> orientation.
    a, b, c) Decreasing of tip sharpness in the set. d) Double tip artifact.
    Image courtesy of Prof. Sergey Gastev, St. Petersburg

    As a matter of fact, the yield of cantilevers with "good" tips is occasionally not very close to 100% due to defects of one type or another including the most common mentioned above. Thus, development of a simple tip shape characterization technique is quite desirable. Moreover, scanning probe techniques are utilized as the means of choice for critical dimension metrology (CDM) applications  [837, 1608, 1612] increasingly in recent years, and the tip shape geometry becomes a crucial factor of success.

    Problem of tip-sample convolution. Methods of tip characterization.

    Achieving the best possible resolution will always remain the outmost goal for many SPM studies. There are, though, some technical challenges to be overcome as well as fundamental limitations on the way to high resolution.

    One of the technical issues that has to be considered is the imperfect geometry and finite size of the tip. The best approximation to the ideal tip geometry (omitting various natural disturbing factors like thermal noise) is believed to be a carbon nanotube of several nanometers in diameter, several micrometers long and with a single atom at the sharp conical apex. Most of the commercial probes are too far from this ideal case. In general, a conventional tip is unable to penetrate high aspect ratio structures, to touch every point on the sample surface and to profile exactly surfaces with complex topography. In this way, the finite size of the tip and its imperfectness contribute significantly to distortion of images.

    There are also some physical restrictions in achieving subnanometer resolution besides technical issues. Due to the long-range nature of van der Waals forces acting between tip and sample, resulting force is determined by the mean interaction of a large number of atoms from both the tip and the sample surface especially when the features are comparable in size with tip apex. Therefore, the features of the sample surface become diluted by this interaction of collective nature.

    Thus, actually the image is a complex convolution of the tip and the surface shapes. This convolution is unavoidable but there are ways to reconstruct a rather accurate image from the diluted one using special mathematical methods.

    The earliest attempts to formulate the task mathematically date from papers of Reiss et al. [1633] and Keller [1634]. Their works have become the basis for several similar methods of deconvolution where some simple particular geometries, e.g. spheres or parabolas are considered. These methods require intensive computation and evaluation of numerical derivatives and, therefore are comlicated enough for practical implementation.

    Another approach to solve the problem of deconvolution relies on mathematical morphology. This approach has been proposed and developed by many authors [1637-1642] beginning from works of Gallarda and Jain [1635] and Pingali and Jain [1636]. It is applicable to general shapes (any tip and sample which can be expressed as an array of heights in the usual fashion), and does not require numerical derivatives.

    These methods have one point in common - it is necessary beforehand to estimate the tip geometry in order to perform proper deconvolution procedure thereafter. One of the most popular methods for tip shape and size determination is based on the so-called tip characterizers, which are the features of well-defined geometry at the nanoscale. Characterizers may be highly ordered edges of crystal facets (SrTiO3 [1603], MgO and NaCl [1604]), nanoparticles of well-defined spherical form [1605, 1607], sputtered cones [51] or nanoparticles [27] of InP, spike-like features in hydrothermally deposited ZnO films [268], macromolecules [788, 1455] and many others [E010]. Additionally, specially designed calibration gratings can also serve as tip characterizers. A computer analysis of the obtained scans can help restore the tip shape and at the same time deduce what kind of defect the tip contains.

    An alternative widely used approach for tip shape determination has come to be known as "blind reconstruction". The term "blind" means that there is no need of a priory knowledge of the exact characterizer's actual geometry. Since the publication of the principles of general blind reconstruction by Villarrubia [1639] equivalent or similar methods independently are discovered later [1643, 1644]. The algorithms of blind reconstruction are published in [1645] and a speedier version is described and tested in [1646]. It is experimentally verified to work in a comparison between blind reconstruction of a tip and an independent method [1647]. In other work Todd and Eppell report on the improvement of this method in respect to spatially anisotropic noise which generally takes place at the nanoscale and introduces an error in the tip geometry determination [801]. The latest advances in evaluation of tip performance in the blind reconstruction method can be found in the papers of Nie et al. [1654, 1656].

    Another modern technique developed by S. Xu et al. [23] is called nanografting. It is based on subsequent imaging of a thiol self-assembled monolayer. The authors state that this method features simplicity, high speed and the ability to characterize the very top portion of the tip. Moreover, tips with multiple asperities, which are difficult to investigate using other approaches, can be easily identified and characterized via nanografting.

    We would like to express special thanks to John Villarrubia from the National Institute of Standards and Technology (Gaithersburg, MD, USA) for the constructive discussion on the content of this paragraph.

    Please, send all comments and suggestions concerning these pages to info@mikromasch.com

    ID Reference list (newly come references are marked red)
    13 Effect of tip morphology on AFM images
    S.H. Ke, T. Uda, I. Stich, K. Terakura
    Applied Physics A: Materials Science & Processing, 72 (2001), S63-S66
    17 Forces with submolecular resolution between the probing tip and Cu-TBPP molecules on Cu(100) observed with a combined AFM/STM
    Ch. Loppacher, M. Bammerlin, M. Guggisberg, E. Meyer, H.-J. Guntherodt, R. Luthi, R. Schlittler, J.K. Gimzewski
    Applied Physics A: Materials Science & Processing, 72 (2001), S105-S108
    21 Influence of tip size on AFM roughness measurements
    D.L. Sedin, K.L. Rowlen
    Applied Surface Science, 182 (2001), 1-2, 40-48
    23 Characterization of AFM tips using nanografting
    S. Xu, N.A. Amro, G.-Y. Liu
    Applied Surface Science, 175-176 (2001), 649-655
    27 Evaluation of AFM tips using nanometer-sized structures induced by ion sputtering
    F. Frost, D. Hirsch, A. Schindler
    Applied Surface Science, 179 (2001), 1-4, 8-12
    30 Simulated nc-AFM images of Si(001) surface with nanotube tip
    K. Tagami, N. Sasaki, M. Tsukada
    Applied Surface Science, 172 (2001), 3-4, 301-306
    47 Theory for the effect of the tip-surface interaction potential on atomic resolution in forced vibration system of noncontact AFM
    N. Sasaki, M. Tsukada
    Applied Surface Science, 140 (1999), 3-4, 339-343
    51 Cones formed during sputtering of InP and their use in defining AFM tip shapes
    M.P. Seah, J.E. Johnstone, S.J. Spencer, P.J. Cumpson
    Applied Surface Science, 144-145 (1999), 151-155
    78 Functionalization of carbon nanotube AFM probes using tip-activated gases
    A.T. Woolley, E. Joselevich, C.M. Lieber, S.S. Wong
    Chemical Physics Letters, 306 (1999), 5-6, 219-225
    82 Intrinsic stress measured on ultra-thin amorphous carbon films deposited on AFM cantilevers
    P. Lemoine, J.F. Zhao, A. Bell, P. Maguire, J. McLaughlin
    Diamond and Related Materials, 10 (2001), 1, 94-98
    85 Characterization of AFM cantilevers coated with diamond-like carbon
    M.C. Salvadori, M.C. Fritz, C. Carraro, R. Maboudian, O.R. Monteiro, I.G. Brown
    Diamond and Related Materials, 10 (2001), 12, 2190-2194
    132 Sizes correction on AFM images of nanometer spherical particles
    De-Quan Yang, Yu-Qing Xiong, Yun Guo, Da-An Da, Wei-Gang Lu
    Journal of Materials Science (full set), 36 (2000), 1, pp. 263-267
    153 Multifunctional AFM/SNOM Cantilever Probes: Fabrication and Measurements
    M. Stopka, D. Drews, K. Mayr, M. Lacher, W. Ehrfeld, T. Kalkbrenner, M. Graf, V. Sandoghdar, J. Mlynek Microelectronic Engineering, 53 (2000), 1-4, 183-186
    157 Integrating diamond pyramids into metal cantilevers and using them as electrical AFM probes
    T. Hantschel, S. Slesazeck, P. Niedermann, P. Eyben, W. Vandervorst
    Microelectronic Engineering, 57-58 (2001), 749-754
    160 Piezoresistive sensors on AFM cantilevers with atomic resolution
    R. Jumpertz, O. Ohlsson, A.v.d. Hart, J. Schelten, F. Saurenbach
    Microelectronic Engineering, 41-42 (1998), 441-444
    161 Fabrication of Multipurpose AFM/SCM/SEP Microprobe with Integrated Piezoresistive Deflection Sensor and Isolated Conductive Tip
    P. Hudek, P. Grabiec, F. Shi, T. Gotszalk, I.W. Rangelow, P. Dumania
    Microelectronic Engineering, 41-42 (1998), 477-480
    163 6.6 MHz silicon AFM cantilever for high-speed readout in AFM-based recording
    K. Itoh, H. Koyanagi, K. Etoh, S. Hosaka, A. Kikukawa
    Microelectronic Engineering, 46 (1999), 1-4, 109-112
    164 Tip-on-tip: a novel AFM tip configuration for the electrical characterization of semiconductor devices
    W. Kulisch, W. Vandervorst, T. Hantschel, T. Trenkler, A. Malave, D. Buchel, E. Oesterschulze
    Microelectronic Engineering, 46 (1999), 1-4, 113-116
    184 First AFM observation of thin cermet films close to the percolation threshold using a conducting tip
    M. Gadenne, P. Gadenne, O. Schneegans, F. Houze, P. Chretien, C. Desmarest, J. Sztern
    Physica B: Condensed Matter, 279 (2000), 1-3, 94-97
    210 Fabrication and characterization of cantilevers with integrated sharp tips and piezoelectric elements for actuation and detection for parallel AFM applications
    N.F. De Rooij, G. Schurmann, G.-A. Racine, P.-F. Indermuhle
    Sensors and Actuators A: Physical, 60 (1997), 1-3, 186-190
    211 Piezoresistive silicon V-AFM cantilevers for high-speed imaging
    A.G.R. Evans, A. Brunnschweiler, G. Ensell, Y. Su
    Sensors and Actuators A: Physical, 76 (1999), 1-3, 139-144
    213 AFM imaging with an xy-micropositioner with integrated tip
    P.-F. Indermuhle, V.P. Jaecklin, J. Brugger, C. Linder, N.F. De Rooij, M. Binggeli
    Sensors and Actuators A: Physical, 47 (1995), 1-3, 562-565
    214 Modular design of AFM probe with sputtered silicon tip
    P.A. Rasmussen, J. Thaysen, S. Bouwstra, A. Boisen
    Sensors and Actuators A: Physical, 92 (2001), 1-3, 96-101
    220 Structuring of mica surfaces with a vibrating AFM tip
    J. Kuppers, T. Schimmel, R. Kladny, V. Popp
    Surface Science, 401 (1998), 1, 105-111
    227 Current-dependent growth of silicon nitride lines using a conducting tip AFM
    D. Sarid, C.A. Peterson, R.K. Workman
    Surface Science, 423 (1999), 2-3, L277-L279
    237 Direct imaging of the tip shape by AFM.
    A. Baiker, F. Atamny
    Surface Science, 323 (1995), 3, l314-l318
    243 Simulation of interaction force between Si tip and Si(111)3x3-Ag surface of IET structure in noncontact AFM
    N. Sasaki, S. Watanabe, H. Aizawa, M. Tsukada
    Surface Science, 493 (2001), 1-3, 188-193
    268 Characterization of atomic force microscopy (AFM) tip shapes by scanning hydrothermally deposited ZnO thin films
    G.W. Bao, S.F.Y. Li
    Talanta, 45 (1998), 4, 751-757
    270 A tower-shaped prototypic molecule designed as an atomically sharp tip for AFM applications
    A.V. Rukavishnikov, M.D. Lee, A. Phadke, D.H. LaMunyo, P.A. Petukov, J.F. Keana
    Tetrahedron Letters, 40 (1999), 35, 6353-6356
    282 AFM for the imaging of large and steep submicroscopic features, artifacts and scraping with asymmetric cantilever tips
    G. Kaupp, J. Schmeyers, U. Pogodda, M. Haak, T. Marquardt, M. Plagmann
    Thin Solid Films, 264 (1995), 2, 205-211
    332 Application of the needle sensor for microstructure measurements and atomic force microscopy
    U. Grunewald, K. Bartzke, T. Antrack
    Thin Solid Films, 264 (1995), 2, pp. 169-171
    390 Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement
    J. Thaysen, A. Boisen, O. Hansen, S. Bouwstra
    Sensors and Actuators A: Physical, 83 (2000), 1-3, 47-53
    451 Chemical bonds studied with functionalized atomic force microscopy tips
    T. Han, J.M. Williams, T.P. Beebe
    Analytica Chimica Acta, 307 (1995), 2-3, 365-376
    487 Effect of tip sharpness on the relative contributions of attractive and repulsive forces in the phase imaging of tapping mode atomic force microscopy
    M.-H. Whangbo, R. Brandsch, G. Bar
    Surface Science, 422 (1999), 1-3, L192-L199
    519 Harmonic responses of a cantilever interacting with elastomers in tapping mode atomic force microscopy
    M.-H. Whangbo, G. Bar, R. Brandsch, L. Delineau
    Surface Science, 448 (2000), 1, L179-L187
    537 Imaging silicon by atomic force microscopy with crystallographically oriented tips
    F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart
    Applied Physics A: Materials Science & Processing, 72 (2001), 7, S15-S17
    581 Lead zirconate titanate cantilever for noncontact atomic force microscopy
    T. Fujii, Y. Miyahara, H. Bleuler, H. Yamada, A. Tonoli, S. Watanabe, S. Carabelli
    Applied Surface Science, 140 (1999), 3-4, 428-431
    602 Micromachining of diamond probes for atomic force microscopy applications
    K. Unno, T. Shibata, E. Makino
    Sensors and Actuators A: Physical, 88 (2001), 3, 247-255
    642 Non-contact atomic force microscopy of an antiferromagnetic NiO(100) surface using a ferromagnetic tip
    H. Hosoi, M. Kimura, K. Hayakawa, K. Sueoka, K. Mukasa
    Applied Physics A: Materials Science & Processing, 72 (2001), 7, S23-S26
    698 Simulation of atomic force microscopy image variations due to tip apex size: Appearance of half spots
    M. Komiyama, K. Tazawa, K. Tsujimichi, A. Hirotani, M. Kubo, A. Miyamoto
    Thin Solid Films, 281-282 (1996), 1-2, 580-583
    756 The determination of the elastic modulus of microcantilever beams using atomic force microscopy
    B. T. Comella, M. R. Scanlon
    Journal of Materials Science (full set), 35 (2000), 3, 567-572
    788 Calibration of atomic force microscope tips using biomolecules
    Thundat, T., Zheng, X. -Y., Sharp, S. L., Allison, D. P., Warmack, R. J., Joy, D. C. and Ferrell, T. L.
    Scanning Microsc. 6 (1992), 903-910
    801 A method to improve the quantitative analysis of SFM images at the nanoscale
    B.A. Todd, S.J. Eppell
    Surface Science, 491 (2001), 3, 473-483
    818 Carbon nanotubes as tips in non-contact SFM
    V. Barwich, M. Bammerlin, A. Baratoff, R. Bennewitz, M. Guggisberg, C. Loppacher, O. Pfeiffer, E. Meyer, H.-J. Guntherodt, J.-P. Salvetat, J.-M. Bonard, L. Forro
    Applied Surface Science, 157 (2000), 4, 269-273
    837 Intercomparison of SEM, AFM, and Electrical Linewidths
    J. S. Villarrubia, R. Dixson, S. Jones, J. R. Lowney, M. T. Postek, R. A. Allen, and M. W. Cresswell
    Metrology, Inspection, and Process Control for Microlithography XIII, Proc. SPIE 3677 (1999), pp. 587-598 .
    859 Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy
    R. W. Carpick, D. F. Ogletree and M. Salmeron
    Applied Physics Letters 70 (1997), 1548
    860 Investigating the effects of silicon tip contamination in noncontact scanning force microscopy (SFM)
    A.S. Foster, P.V. Sushko, A.L. Shluger, L.N. Kantorovich
    Applied Surface Science, 144-145 (1999), 608-612
    870 Lithographically defined polymer tips for quartz tuning fork based scanning force microscopes
    T. Akiyama, U. Staufer, N.F. de Rooij, L. Howald, L. Scandella
    Microelectronic Engineering, 57-58 (2001), 769-773
    873 Magnetically refined tips for Scanning Force Microscopy
    R. Jumpertz, P. Leinenbach, A.W.A. van der Hart, J. Schelten
    Microelectronic Engineering, 35 (1997), 1-4, 325-328
    878 Micromachined Si3N4-Tip on Cantilever for Parallel SFM and NSOM Applications
    S.S. Choi, M.Y. Jung, I.W. Lyo
    Microelectronic Engineering, 46 (1999), 1-4, 427-430
    886 Non-destructive imaging of delicate polymer surfaces using scanning force microscopy tips modified with hydrophobic self-assembled monolayers
    G.J. Leggett, B.D. Beake
    Polymer, 40 (1999), 21, 5973-5976
    921 Self-excited force-sensing microcantilevers with piezoelectric thin films for dynamic scanning force microscopy
    T. Itoh, T. Suga
    Sensors and Actuators A: Physical, 54 (1996), 1-3, 477-481
    922 Self-excited piezoelectric PZT microcantilevers for dynamic SFM-with inherent sensing and actuating capabilities
    T. Itoh, T. Suga, C. Lee
    Sensors and Actuators A: Physical, 72 (1999), 2, 179-188
    933 Study of tip-sample interaction in scanning force microscopy
    M. Luna, J. Colchero, J. Gomez-Herrero, A.M. Baro
    Applied Surface Science, 157 (2000), 4, 285-289
    943 Tapping-mode scanning force microscopy: Metallic tips and samples
    D. Sarid
    Computational Materials Science, 5 (1996), 4, 291-297
    972 Studies of vibrating atomic force microscope cantilevers in liquid
    Schaeffer T.E., Cleveland J.P., Ohnesorge F.M., Walters D.A., Hansma P.K.
    J. Appl. Phys. 80 (1996), 3622-3627.
    974 Investigation of the image contrast of tapping-mode atomic force microscopy using protein-modified cantilever tips
    You H.X., Yu L.
    Biophys. J. 73 (1997), 3299-3308.
    1007 Application of commercially available cantilevers in tuning fork Scanning Probe Microscopy (SPM) studies
    S. Rozhok, V. Chandrasekhar
    Solid State Communications, 121 (2002), 12, 683-686
    1010 Artifacts in SPM measurements of thin films and coatings
    T.G. Lenihan, A.P. Malshe, W.D. Brown, L.W. Schaper
    Thin Solid Films, 270 (1995), 1-2, 356-361
    1022 Fabrication of integrated diamond cantilevers with tips for SPM applications
    W. Kulisch, A. Malave, W. Scholz, C. Mihalcea, E. Oesterschulze, G. Lippold
    Diamond and Related Materials, 6 (1997), 5-7, 906-911
    1025 In situ scanning probe microscopy and new perspectives in analytical chemistry
    A.G. Hansen, A. Boisen, J.-D. Zhang, J.U. Nielsen, J.E.T. Andersen, J. Ulstrup, H. Jensenius, E.P. Friis, Q. Chi
    Trends in Analytical Chemistry, 18 (1999), 11, 665-674
    1026 Indirect tip fabrication for Scanning Probe Microscopy
    J.P. Rasmussen, O. Hansen, S. Bouwstra, A. Boisen
    Microelectronic Engineering, 30 (1996), 1-4, 579-582
    1033 Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy
    M. Ashhab, M. V. Salapaka, M. Dahleh, I. Mezic
    Nonlinear Dynamics, 20 (1999), 3, 197-220
    1065 Spring constants of composite ceramic/gold cantilevers for scanning probe microscopy
    J.L. Hazel, V.V. Tsukruk
    Thin Solid Films, 339 (1999), 1-2, 249-257
    1105 Cantilever vibration control by electrostatic actuation for magnetic force microscopy
    M.J. Cunningham, D.F.L. Jenkins, M.A.H. Khalid
    Sensors and Actuators A: Physical, 63 (1997), 2, 125-128
    1110 Description of magnetic force microscopy by three-dimensional tip Green's function for sample magnetic charges
    H. Saito, S. Ishio, J. Chen
    Journal of Magnetism and Magnetic Materials, 191 (1999), 1-2, 153-161
    1111 Development of high coercivity magnetic force microscopy tips
    S.H. Liou, Y.D. Yao
    Journal of Magnetism and Magnetic Materials, 190 (1998), 1-2, 130-134
    1117 Fabrication and characterization of advanced probes for magnetic force microscopy
    U. Hartmann, J. Schelten, P. Leinenbach, U. Memmert
    Applied Surface Science, 144-145 (1999), 492-496
    1122 Interactions between soft magnetic samples and MFM tips
    S.L. Tomlinson, A.N. Farley, S.R. Hoon, M.S. Valera
    Journal of Magnetism and Magnetic Materials, 157-158 (1996), 557-558
    1123 Interpretation of low-coercivity tip response in MFM imaging
    R. Street, D.L. Bradbury, L. Folks
    Journal of Magnetism and Magnetic Materials, 177-181 (1998), 2002, 980-981
    1126 Investigation of the response of a new amorphous ferromagnetic MFM tip coating with an established sample and a prototype device
    G.P. Heydon, W.M. Rainforth, M.R.J. Gibbs, H.A. Davies, J.E.L. Bishop, J.W. Tucker, S. Huo, G. Pan, D.J. Mapps, W.W. Clegg
    Journal of Magnetism and Magnetic Materials, 214 (2000), 3, 225-233
    1176 Preparation and characterisation of a new amorphous tip coating for application in magnetic force microscopy
    H.A. Davies, S. McVitie, M.R.J. Gibbs, R.P. Ferrier, W.M. Rainforth, J. Scott, G.P. Heydon, J.W. Tucker, J.E.L. Bishop
    Journal of Magnetism and Magnetic Materials, 205 (1999), 2-3, 131-135
    1181 Rapid biochemical detection and differentiation with magnetic force microscope cantilever arrays
    R.G. Rudnitsky, E.M. Chow, T.W. Kenny
    Sensors and Actuators A: Physical, 83 (2000), 1-3, 256-262
    1205 Method for the calibration of atomic-force microscope cantilevers
    J.E. Sader, I. Larson, P. Mulvaney and L.R. White
    Rev. Sci. Instrum., 66 (1995) 3789-3798
    1206 Calibration of rectangular atomic force microscope cantilevers
    J.E. Sader, J.W.M. Chon and P. Mulvaney
    Rev. Sci. Instrum., 70 (1999) 3967-3969
    1210 Quality Factors in Micron- and Submicron-Thick Cantilevers
    K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe and D. Rugar
    Journal of Microelectromechanical Systems, 9 (2000) 1, pp. 117-125
    1211 Functionalization of scanning force microscopy cantilevers via galvanic displacement technique
    M. C. Fritz, C. Carraro and R. Maboudian
    Tribology Letters, 11 (2001), 3-4, 171-175
    1218 Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers
    Neumeister, J. M. and W. A. Ducker
    Rev. Sci. Instrum., 65 (1994), 8, 2527-2531
    1281 Whisker probes
    Givargizov E.I., Stepanova A.N.,Obolenskaya L.N.,Mashkova E.S., Molchanov V.A.,Givargizov M.E., Rangelow I.
    Ultramicroscopy, 82 (2000), p. 57-61
    1300 A new calibration method of the lateral contact stiffness and lateral force using modulated lateral force microscopy
    O. Pietrement, J.L. Beaudoin, M. Troyon
    Tribology Letters, 7 (1999), 4, 213-220
    1308 Lateral force microscopy - A quantitative approach
    C.T. Gibson, G.S. Watson, S. Myhra
    Wear, 213 (1997), 1-2, pp. 72-79
    1325 Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid
    H.Nishijima, S.Kamo, S.Akita, Y.Nakayama, K.I.Hohmura, S.H.Yoshimura, K.Takeyasu
    Appl. Phys. Lett. 74 (1999), 26, pp. 4061-4063
    1328 Preparation of platinum iridium scanning probe microscopy tips
    A. H. Sorensen, U. Hvid, M. W. Mortensen, K. A. Morch
    Rev. Sci. Instrum. 70 (1999) 7, pp. 3059-3067
    1336 Ultrasharp diamond-coated silicon tips for scanning-probe devices
    E. I. Givargizov, A.N. Stepanova, E. S. Mashkova, V. A. Molchanov, F. Shi, P. Hudek and I. W. Rangelow
    Microelectronic Engineering 41/42 (1998) 499-502
    1341 Test structure for SPM tip shape deconvolution
    V. Bykov, A. Gologanov, V. Shevyakov
    Appl. Phys. A 66 (1998), 499-502
    1358 Sensitivity of vibration modes of atomic force microscope cantilevers in continuous surface contact
    Win-Jin Chang
    Nanotechnology 13 (2002) 510-514
    1376 Optical interference artifacts in contact atomic force microscopy images
    A. Mendez-Vilas, M.L. Gonzalez-Martin and M.J. Nuevo
    Ultramicroscopy, Vol. 92 (3-4) (2002) pp. 243-250
    1378 A complementary-metal-oxide-semiconductor-field-effect-transistor-compatible atomic force microscopy tip fabrication process and integrated atomic force microscopy cantilevers fabricated with this process
    Mizuki Ono, Dirk Lange, Oliver Brand, Christoph Hagleitner and Henry Baltes
    Ultramicroscopy, Vol. 91 (1-4) (2002) pp. 9-20
    1379 Mapping of lateral vibration of the tip in atomic force microscopy at the torsional resonance of the cantilever
    Takayoshi Kawagishi, Atsushi Kato, Yasuo Hoshi and Hideki Kawakatsu
    Ultramicroscopy, Vol. 91 (1-4) (2002) pp. 37-48
    1380 Scanning probe microscopy installed with nanotube probes and nanotube tweezers
    Yoshikazu Nakayama
    Ultramicroscopy, Vol. 91 (1-4) (2002) pp. 49-56
    1381 Performance of the carbon nano-tube assembled tip for surface shape characterization
    M. Yasutake, Y. Shirakawabe, T. Okawa, S. Mizooka and Y. Nakayama
    Ultramicroscopy, Vol. 91 (1-4) (2002) pp. 57-62
    1382 Self-sensing piezoresistive cantilever and its magnetic force microscopy applications
    Hiroshi Takahashi, Kazunori Ando and Yoshiharu Shirakawabe
    Ultramicroscopy, Vol. 91 (1-4) (2002) pp. 63-72
    1437 Atomic Force Microscopy Cantilevers for Sensitive Lateral Force Detection
    M. Kageshima, H. Ogiso, S. Nakano, M. A. Lantzand and H. Tokumoto
    Jpn. J. Appl. Phys., 38 (1999) 3958-3961
    1441 Electrochemically etched nickel tips for spin polarized scanning tunneling microscopy
    Cavallini M. and Biscarini F.
    Rev. Sci. Instrum., 71 (2000), 12, pp. 4457-4460
    1442 Silicon nitride Cantilevers with Oxidation-Sharpened Silicon Tips for Atomic Force Microscopy
    R. J. Grow, S. C. Minne, S. R. Manalis and C. F. Quate
    Journal of Microelectromechanical Systems, 11 (2002) 4, pp. 317-321
    1445 WS2 nanotubes as tips in scanning probe microscopy
    A.Rothschild, S.R.Cohen, R.Tenne
    Appl. Phys. Lett. 75 (1999), 25, pp. 4025-4027
    1455 AFM structural study of the molecular chaperone GroEL and its two-dimensional crystals: an ideal "living" calibration sample
    F. Valle, J.A. DeRose, G. Dietler, M. Kawe, A. Plückthun and G. Semenza
    Ultramicroscopy, Vol. 93 (1) (2002) pp. 83-89
    1456 Atomic force microscopy using single-wall C nanotube probes
    E. S. Snow, P. M. Campbell, and J. P. Novak
    J. Vac. Sci. Tech. B 20, 2002, 822
    1464 Terabit-per-square-inch data storage with the atomic force microscope
    E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, and C. F. Quate
    Appl. Phys. Lett. 75 (1999), 22, 3566-3568
    1578 Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers
    Viani, M. B., T. E. Schaeffer, G. T. Paloczi, L. I. Pietrasanta, B. L. Smith, J. B. Thompson, M. Richter, M. Rief, H. E. Gaub, K. W. Plaxco, A. N. Cleland, H. G. Hansma, and P. K. Hansma.
    Rev. Sci. Instrum. 70 (1999), 4300-4303.
    1603 Mesoscopic Calibration of an Atomic Force Microscope
    S.S. Sheiko, M. Möller, E.M.C.M. Reuvekamp and H.W. Zandbergen
    Ultramicroscopy 53 (1994) 371-380
    1604 Determining the form of atomic force microscope tips
    P. Siedle, H-J. Butt. E.Bamberg, D.N. Wang, W. Kuhlbrand, J. Zach and M. Haider
    Int. Phys. Conf. Ser. 130 (1993) 361
    1605 Calibration of the scanning (atomic) force microscope with gold particles
    S.Xu and M.F.Arnsdorf
    J. Microsc. 173 (1994) 199
    1606 CVD diamond probes for nanotechnology
    P. Niedermann, W. Hanni, D. Morel, A. Perret, N. Skinner, P.-F. Indermuhle, N.-F. de Rooij , P.-A. Buffat
    Applied Physics A: Materials Science & Processing, 66 (1998), 7, S31-S34
    1607 Tip Characterization from AFM Images of Nanometric Spherical Particles
    Ramirez-Aguilar, K. A.; Rowlen, K. L.
    Langmuir, 14 (1998), 2562-2566
    1608 Tip shape effects in scanning probe metrology
    R. Cottle
    Proc. SPIE, Vol. 4562 (2002), p. 247-255
    1609 Fabrication of monolithic diamond probes for scanning probe microscopy applications
    Scholz, Wenzel; Albert, D.; Malave, A.; Werner, Stephfan; Mihalcea, Christopher; Kulisch, W.;Oesterschulze, Egbert
    Proc. SPIE Vol. 3009 (1997), p. 61-71
    1610 Sharpened carbon nanotube probes
    Moloni, Katerina; Lal, Amit; Lagally, Max G.
    Proc. SPIE Vol. 4098 (2000), p. 76-83
    1611 Electric force microscopy with a single carbon nanotube tip
    Dagata, John A.; Chien, F. S.; Gwo, S.; Morimoto, K.; Inoue, Takahito; Itoh, J.; Yokoyama, Hiroshi
    Proc. SPIE Vol. 4344 (2001) p. 58-71
    1612 Using carbon nanotube cantilevers in scanning probe metrology
    R. Schlaf, Y. Emirov, J.A. Bieber, A. Sikder, J. Kohlscheen, D.A. Walters, M.R. Islam, B. Metha, Z. F. Ren, T.L. Shofner, B.B. Rossie, M.W. Cresswell
    Proc. SPIE Vol 4689 (2002), (in print)
    1613 Carbon nanotubes as probes for atomic force microscopy
    R. M. D. Stevens, N. A. Frederick, B. L. Smith, D. E. Morse, G. D. Stucky and P. K. Hansma
    Nanotechnology 11 (2000), 1-5
    1614 Carbon nanotube tips - high-resolution probes for imaging biological systems
    S.S. Wong, J.D. Harper, P.T. Lansbury Jr., C.M. Lieber
    J. Am. Chem. Soc. 120, 1998, 603-604
    1615 Single-walled carbon nanostructure probes for high-resolution nanostructure imaging
    S.S. Wong, A.T. Woolley, T.W. Odom, J.-L. Huang, P. Kim, D.V. Vezenov, C.M. Lieber
    Appl. Phys. Lett. 73, 1998, 3465-3467
    1616 Growth of nanotubes for probe microscopy tips
    J. H. Hafner, C. L. Cheung, and C. M. Lieber
    Nature, 398 (1999) N6730, 761
    1617 Nanotube as Nanoprobes in Scanning Probe Microscopy
    Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E.
    Nature, 384 (1996), 147
    1618 Structural and Functional Imaging with Nanotube AFM probes
    Hafner, J. H.; Cheung, C. L.; Woolley, A. T.; Lieber, C. M.
    Progress in Biophysics and Molcular Biology, 77 (2001), pp. 73
    1619 Exploiting the properties of carbon nanotubes for nanolithography
    H. Dai, N. Franklin, and J. Han
    Appl. Phys. Lett. 73 (1998), 1508-1510
    1620 High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning
    Probe Microscopies

    Jason H. Hafner, Chin-Li Cheung, Tjerk H. Oosterkamp, and Charles M. Lieber
    J. Phys. Chem. B 105 (2001) 4, 743-746
    1621 Calibration of the Torsional Spring Constant and the Lateral Photodiode Response of Friction Force Microscopes
    A. Feiler, P. Attard, I. Larson
    Rev. Sci. Instrum. 71 (2000), 2746-2750
    1622 Stability of thiol-immobilized DNA on microcantilever sensors
    K.A. Stevenson, A. Mehta, K.M. Hansen and T.G. Thundat
    Proc. ESC 201 Meeting - Philadelphia, Pennsylvania, May 12-17 (2002)
    1623 In situ detection of calcium ions with chemically modified microcantilevers
    H.-F. Ji and T. G. Thundat
    Biosensors & Bioelectronics, 2002, 17, 337-343
    1624 Ultrasensitive Detection of Trace CrO42- Using a Microcantilever sensors
    H.-F. Ji, T. Thundat, R. Dabestani, G. M. Brown, P. F. Britt, and P. Bonnesson
    Anal. Chem. 2001, 73(7), 1572-1576
    1625 Nanomechanical Signatures of Biomolecular Recognition and Interactions
    G. Wu, H. -F. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar
    Proc. Natl. Acad. Sci. 2001, 98, 1560-1564
    1626 Cantilever-based optical deflection assay for discrimination of DNA single nucleotide mismatches
    K. M. Hansen, H.-F. Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, T. Thundat
    Anal. Chem., 2001, 73(7), 1567-1571
    1627 Detection of pH variation Using Modified Microcantilever Sensors
    H.-F. Ji, K. M. Hansen, Z. Hu, T. Thundat
    Sensors and Actuators B: Chemical, 72 (2001), 233-238
    1628 A Novel Self-Assembled Monolayer Coated Microcantilever for Low Level Cesium Detection
    H. F. Ji, R. Dabestani, E. Finot, T. Thundat, G. M. Brown and P. F. Britt
    Chem. Commun., 2000, 457
    1629 Highly Selective Microcantilever Sensor for Cesium Ion Detection
    T. Thundat, E. Finot, H.-F. Ji, R. Dabestani, P.F. Britt, P. V. Bonnesen, G. M. Brown, R. J. Warmack
    Proc. Electrochem. Soc., 1999, 99-23, 314-319
    1630 In-situ Detection of DNA hybridization using Browninan Motion of Microcantilevers
    H.-F. Ji, K. M. Hansen, T. Thundat, G. Wu, A. Majumdar, R. Datar, and R. Cote
    Submitted to Anal. Chem.
    1631 Ultrasensitive Detection of Hg2+ Using Microcantilever Sensors
    X. Xu, T. Thundat, G. M. Brown, and H. F. Ji
    Submitted for publication.
    1633 Scanning tunneling microscopy on rough surfaces-deconvolution of constant current images
    G. Reiss, F. Schneider, J. Vancea, and H. Hoffmann
    Appl. Phys. Lett. 57 (1990), 867
    1634 Reconstruction of STM and AFM images distorted by finite-size tips
    D. Keller
    Surf. Sci. 253 (1991), 353
    1635 Computational model of the imaging process in scanning-x microscopy
    H. Gallarda and R. Jain
    Proceedings of Conference on Integrated Circuit Metrology, Inspection, and Process Control, V, SPIE Vol. 1464 (1991), 459
    1636 Restoration of scanning probe microscope images
    G. S. Pingali and R. Jain
    Proceedings IEEE Workshop on Applications of Computer Vision, (1992) pp. 282-289
    1637 Envelope reconstruction of probe microscope images
    D. J. Keller and F. S. Franke
    Surf. Sci. 294 (1993), 409
    1638 Atomic-force microscopy probe tip visualization and improvement of images using a simple deconvolution procedure
    P. Markiewicz and M. C. Goh
    Langmuir 10 (1994), 5
    1639 Morphological estimation of tip geometry for scanned probe microscopy
    J. S. Villarrubia
    Surf. Sci. 321 (1994), 287
    1640 A mathematical morphology approach to image-formation and image-restoreation in scanning tunneling and atomic-force microscopies
    N. Bonnet, S. Dongmo, P. Vautrot, and M. Troyon
    Microsc. Microanal. Microstruct. 5 (1994), 477
    1641 Morphological restoration of atomic-force microscopy images
    D. L. Wilson, K. S. Kump, S. J. Eppell, and R. E. Marchant
    Langmuir 11 (1995), 265
    1642 Scanned probe microscope tip characterization without calibrated tip characterizers
    J. S. Villarrubia
    J. Vac. Sci. Technol. B. 14 (1996), 1518
    1643 Blind restoration method of scanning tunneling and atomic force microscopy images
    S. Dongmo, M. Troyon, P. Vautrot, E. Delain, and N. Bonnet
    J. Vac. Sci. Technol. B 14 (1996), 1552
    1644 Blind reconstruction of scanning probe image data
    P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler
    J. Vac. Sci. Technol. B 14 (1996), 1557
    1645 Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation
    J. S. Villarrubia
    J. Res. Natl. Inst. Stand. Technol. 102 (1997), 4, 425-454
    1646 A strategy for faster blind reconstruction of tip geometry for scanned probe microscopy
    J. S. Villarrubia
    Metrology, Inspection, and Process Control for Microlithography XII, Proceedings of SPIE Vol. 3332 (1998), 10
    1647 Experimental Test of Blind Tip Reconstruction for Scanning Probe Microscopy
    S. Dongmo, J. S. Villarrubia, S. N. Jones, T. B. Renegar, M. T. Postek, and J. F. Song
    Ultramicroscopy 85 (2000) 3, pp. 141-153
    1649 Micromachined silicon cantilever beams for thin-film stress measurement
    G.F. Cardinale, D.G. Howitt, W.M. Clift, K.F. McCarty, D.L. Medlin, P.B.Mirkarimi, N.R. Moody
    Thin Solid Films 287 (1996), 214-219
    1246 Frequency shifts of cantilevers vibrating in various media
    Stefan Weigert, Markus Dreier and Martin Hegner
    Appl. Phys. Lett. 69 (1996) 19, pp. 2834-2836
    1247 Carbon nanotube-modified cantilevers for improved spatial resolution in electrostatic force microscopy
    S. B. Arnason, A. G. Rinzler, Q. Hudspeth, and A. F. Hebard
    Appl. Phys. Lett. 75 (1999), 18, 2842-2844
    1266 Evaluating probes for "electrical" atomic force microscopy
    T. Trenkler, T. Hantschel, R. Stephenson, P. De Wolf, W. Vandervorst, L. Hellemans, A. Malave, D. Buchel, E. Oesterschulze, W. Kulisch, P. Niedermann, T. Sulzbach, and O. Ohlsson
    J. Vac. Sci. Technol., B18 (2000), 1, pp. 418-427
    1286 Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope
    John Elie Sader
    J. Appl. Phys. 84 (1998) 1, pp. 64-76
    1654 Use of biaxially-oriented polypropylene film for evaluating and cleaning contaminated atomic force microscopy probe tips: an application to blind tip reconstruction
    H.-Y. Nie, M.J. Walzak and N.S. McIntyre
    Rev. Sci. Instrum., 73 (2002), pp. 3831-3836
    1656 A simple and effective method of evaluating atomic force microscopy tip performance
    H.-Y. Nie and N.S. McIntyre
    Langmuir 17 (2001), pp. 432-436
    1687 Chemically-Specific Probes for the Atomic Force Microscope
    G. U. Lee, L. A. Chrisey, C. E. O'ferral, D. E. Pilloff, N. H. Turner, and R. J. Colton
    Israel J. Chem. 36 (1996), pp. 81-87
    1998 Cantilevers and tips for atomic force microscopy
    M. Tortonese
    IEEE Eng Med Biol Mag, 16 (1997) 2, 28-33
    1827 Growth of tungsten carbide nano-needle and its application as a scanning tunnelling microscope tip
    T. Arie, S. Akita, and Y. Nakayama
    J. Phys. D: Appl. Phys., 31 (1998) L49-51
    1878 AFM tips: how sharp are they?
    S. Sheng, D. M. Czajkowsky, Z. Shao
    J. Microsc., 196 (1999) 1, 1-5
    1824 Carbon nanotube tips for a scanning probe microscope: their fabrication and properties
    S. Akita, H. Nishijima, Y. Nakayama, F. Tokumasu, and K.Takeyasu
    J. Phys. D: Appl. Phys., 32 (1999) 9, 1044-1048
    2357 Quality assessment of atomic force microscopy probes by scanning electron microscopy: correlation of tip structure with rendered images
    D. J. Taatjes, A. S. Quinn, M. R. Lewis, E. G. Bovill
    Microsc. Res. Tech., 44 (1999) 5, 312-326
    2380 Scanning electron microscopy studies of protein-functionalized atomic force microscopy cantilever tips
    M. Micic, A. Chen, R. M. Leblanc, V. T. Moy
    Scanning, 21 (1999) 6, 394-397
    1862 Adhesion artefacts in atomic force microscopy imaging
    J. I. Paredes, A. Martinez-Alonso, J. M. Tascon
    J. Microsc., 200 (2000) 2, 109-113
    1823 Atomic force microscopy of single-walled carbon nanotubes using carbon nanotube tip
    N. Choi, T. Uchihashi, H. Nishijima, T. Ishida, W. Mizutani, S. Akita, Y. Nakayama, M. Ishikawa and H. Tokumoto
    Jpn. J. Appl. Phys., 39 (2000) 6B, 3707-3710
    1825 Carbon-nanotube probe equipped magnetic force microscope
    T. Arie, H. Nishijima, S. Akita and Y. Nakayama
    J. Vac. Sci. Technol., B18 (2000) 1, 104-106
    2047 Comprehensive surface analysis of hydrophobically functionalized SFM tips
    R. Luginbuhl, A. Szuchmacher, M. D. Garrison, J. B. Lhoest, R. M. Overney, B. D. Ratner
    Ultramicroscopy, 82 (2000) 1-4, 171-179
    2143 Force Calibration in Lateral Force Microscopy
    R. G. Cain, S. Biggs, N. W. Page
    J. Colloid. Interface. Sci., 227 (2000) 1, 55-65
    1829 Influence of stiffness of carbon-nanotube probes in atomic force microscopy
    S. Akita, H. Nishijima and Y. Nakayama
    J. Phys. D: Appl. Phys., 33 (2000) 2673-2677
    2281 Microfabrication of a combined AFM-SNOM sensor
    G. Schurmann, W. Noell, U. Staufer, N. F. de Rooij
    Ultramicroscopy, 82 (2000) 1-4, 33-38
    1831 Microprocess for fabricating carbon-nanotube probes of a scanning probe microscope
    Y. Nakayama, H. Nishijima, S. Akita, K. I. Hohmura, S. H. Yoshimura and K. Takeyasu
    J. Vac. Sci. Technol., B18 (2000) 2, 661-664
    2340 Piezoresistive sensors for scanning probe microscopy
    T. Gotszalk, P. Grabiec, I. W. Rangelow
    Ultramicroscopy, 82 (2000) 1-4, 39-48
    2200 Implementation of self-sensing SPM cantilevers for nano-force measurement in microrobotics
    S. Fahlbusch, S. Fatikow
    Ultramicroscopy, 86 (2001) 1-2, 181-190
    2217 Integrating an ultramicroelectrode in an AFM cantilever: combined technology for enhanced information
    C. Kranz, G. Friedbacher, B. Mizaikoff, A. Lugstein, J. Smoliner, E. Bertagnolli
    Anal. Chem., 73 (2001) 11, 2491-2500
    2291 Modeling of cylindrically tapered cantilevers for transverse dynamic force microscopy (TDFM)
    M. Antognozzi, D. R. Binger, A. D. Humphris, P. J. James, M. J. Miles
    Ultramicroscopy, 86 (2001) 1-2, 223-232
    1835 Quantitative Analysis of the Magnetic Properties of a Carbon Nanotube Probe in Magnetic Force Microscopy
    T. Arie, N. Yoshida, S. Akita and Y. Nakayama
    J. Phys. D: Appl. Phys., 34 (2001) L43-L45
    1836 Reduction of Long-range Interactions using Carbon Nanotube Probes in Biological Systems
    Y. Maeda, H. Nishijima, S. Akita, T. Matsumoto, Y. Nakayama and T. Kawai
    Jpn. J. Appl. Phys., 40 (2001) 1425-1428
    2506 Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy
    R. W. Stark, T. Drobek, W. M. Heckl
    Ultramicroscopy, 86 (2001) 1-2, 207-215
    2622 Susceptibility of atomic force microscope cantilevers to lateral forces
    J.E. Sader
    Rev. Sci. Instrum., 74 (2003) 4, 2438-2443
    2626 Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI
    Peter J. Cumpson and John Hedley
    Nanotechnology, 14 (2003) 1279-1288
    2641 Scanning Force Microscopy - Calibrative Procedures for "Best Practice"
    C. T. Gibson, G. S. Watson, S. Myhra
    Scanning, 19 (1997) 564-581
    2704 Nanometer-scale scanning sensors fabricated using stencil lithography
    A. R. Champagne, A. J. Couture, F. Kuemmeth, and D. C. Ralph
    Appl. Phys. Lett., 82 (2003) 7, 1111-1113
    2800 E2382-04 Guide to Scanner and Tip Related Artifacts in Scanning Tunneling Microscopy and Atomic Force Microscopy
    ASTM Annual Books of Standards, vol. 03.06 (2004)
    2801 E1813-96 Standard Practice for Measuring and Reporting Probe Tip Shape in Scanning Probe Microscopy
    ASTM Annual Books of Standards, vol. 03.06 (2002)
    E008 http://web.mit.edu/cortiz/www/spring.html
    E009 Facile Convergent Route to Molecular Caltrops
    Yao Y., Tour J.M.
    J. Org. Chem., 1999, 64, 1968-1971
    E010 http://www.weizmann.ac.il/surflab/peter/standard/
    E011 http://www.surface-tec.com/pdf_files/cantilever.PDF
    MIKROMASCH USA
    TOLL-FREE NUMBER: + 1-866-SPMTIPS (776-8477)
    www.nanoandmore.com/USA
    MIKROMASCH EUROPE
    PHONE NUMBER: +49 (0) 6441 2003561
    www.nanoandmore.com
    MikroMasch® is a trademark of Nanoworld AG operated by ISB Ltd.