SPM Applications in Studying Proteins

Proteins play a fundamental role in the structure and the vital functions of all living creatures. This wide class of biomolecules includes well-known names such as albumin, hemoglobin and insulin. Atomic Force Microscopy from its very beginning has contributed significantly to understanding the peculiarities of protein functioning and has provided extra information about their structure and properties.

Atomic Force Microscopy has been successfully employed in exploring protein adsorption onto solid surfaces along with radiolabeling, fluorescence spectroscopy, ellipsometry and other methods. It is quite important in the investigation of implant biocompatibility, in-vitro cell growth, membrane fouling, protein purification and biosensor design. The behavior of proteins at surface defect sites is of interest, as such defects may provide a means of immobilizing biological molecules for detection purposes [1086]. Protein-covered surfaces may be also useful for the catalysis of biological reactions.

Y. F. Dufrene at al. [677, 1527] investigate the organization of collagen adsorbed onto polymer substrates. Combining XPS and radiolabeling they proposed a quantitative description of the layer on the basis of a simple geometric model. AFM allows to confirm this organization by direct observation of the continuous or discontinuous character of the adsorbed layer and provided novel information by revealing topographic features at supramolecular scale (fibrillar structures).

A.P. Quist at al. [804] study the adsorption of albumin (HSA) and tripsin molecules on mica surfaces using AFM. The observed hillocks indicate that molecules are adsorbed partly as aggregates and partly as isolated single molecules. A qualitative estimate of the profiles of the adsorbed molecules can be obtained, giving vivid information on the conformation and domain structure of the adsorbed molecules. Individual molecules are resolved. By the opinions of the authors, it is very exciting that the structure and conformation of individual molecules can be observed in tapping mode AFM, making it a powerful tool for biological research.

P. Kernen at al. [869] investigate aggregations of the largest light-harvesting pigment-protein complex of Photosystem II (SHC II) deposited on glass using the Langmuir-Blodget films technique. The formation of Langmuir-Blodget films with incorporated biomolecules of interest is a common way in preparing flat mono- or multilayer species for measurements with various methods including AFM. Direct observation of the structural organizations in these films helps us to understand specific interactions between molecules within the layer. SHC II is an antenna protein in higher plants comprising almost half of the total pool of the main photosynthetic accessory pigment chlorophylls. Ring-like structures formed in monocomponent protein layers as well as in mixed protein-lipid films were revealed using AFM. It is suggested that LHC II organizes as round-shaped circles with internal diameters of 150-250Å and external diameters of 300-500Å.

Epand at al. [696] first apply Atomic Force Microscopy to study the properties of the hemagglutinin (HA) protein of influenza virus. Association of two different forms of the ectodomain of this protein at supported lipid bilayer interfaces as a function of pH and incubation time was explored. These are bromelain cleaved hemagglutinin (BHA), corresponding to the full ectodomain of the HA protein, and FHA2, the 127 amino acid N-terminal fragment of the HA2 subunit of the hemagglutinin protein. The results provide direct evidence of different protein aggregation phenomena at model lipid surfaces for the BHA and FHA2 fragments of the influenza HA, that may be relevant to their function. The results presented in this paper are the first example of in situ imaging of the ectodomain of a viral envelope protein allowing characterization of the real-time self assembly of a membrane fusion protein.

The nondestructive character of Atomic Force Microscopy and the possibility of operation in nearly any physiological conditions prompted studies of lachrymal deposits on Soft Contact Lens (SCL) that are mainly composed of proteins. J. Baguet at al. [445] suggest that AFM is a new exceptional tool for exploring biomaterials and biomolecular-surface interactions by extending the atomic resolution of the scanning tunnelling microscope to non-conducting materials. The use of Scanning Electron Microcopy in such a case faces several disadvantages since lens preparation affects the structure and the surface of the unworn and worn lenses, some deposits are artefactual and the damaging electron beam causes SCL destruction. For proteins identification the combination of AFM and a sodium dodecil sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of extracted SCL deposits were performed in parallel fashion. Thus, new and unique information on SCL deposits from contacting lachrymal component shows that adsorption on surfaces during continuous wear of the soft contact lenses is a two-step mechanism. First, a uniform coating, probably composed of proteins and mucosubstances, covers the surface. Second, structured deposits appear on the lens surface and quickly form an additional layer over the first protein coating. The images clearly show the evolution of the size and structure of these deposits.

The growth of proteins from solutions in crystalline form [118] also attracts large attention in the scientific world. In the last years a number of in situ AFM studies have been performed on lysozyme [119, 546, 1087, 1088, 1089], canavalin [235, 597, 759, 1090, 1092], thaumatin [546, 755, 1091, 1092], a-amilase [300], catalase [222]. Studying the processes of macromolecular crystallization helps to understand better growth kinetics and nucleation mechanisms in crystal growth as a whole. For instance, the investigation of the growth behavior of porcine pancreatic a-amylase at defined supersaturation, performed by J.P. Astier at al. [300], reveals that at high supersaturation (b=1.6) 2-D nucleation is to be the dominating growth mechanism, whereas at lower supersaturation (b=1.3) the growth process appears to be defect controlled (spiral growth). The analysis of step heights on 2-D nucleation islands (monomolecular protein layers) and growth steps (two molecules in height) in combination with results from light scattering experiments suggests that a single protein molecule is the basic growth unit.

Although similar or higher resolution can be obtained by electron microscopy and X-ray crystallography, the excellent signal-to-noise ratio of AFM topographs allows the direct imaging of native proteins [309, 522, 1094] and their substructures to a resolution of about 0.5nm [1099]. AFM enables conformational changes of single proteins and of their assemblies to be observed directly [1501]. Furthermore, conformational changes can be induced in a controlled manner to identify flexible protein structures [1095, 1098, 1505].

The plasma membrane of the cell comprises diverse membrane proteins, including integral membrane proteins such as receptors, ion channels and transporters, as well as certain antigens that are peripherally associated with the membrane. Because of their important roles in cell growth, differentiation and cell-cell signaling, the structures of the plasma membrane and proteins associated with it have attracted wide attention and have been extensively investigated. During the two decades the study of native membrane proteins evolves from measuring AFM topography of the protein layer to single molecule force spectroscopy [381, 1503, 1505, 1517]. In situ AFM investigations of protein-lipid interactions are also performed [1081]. Continuous progress in the AFM apparatus, measurement technique and sample preparation can be clearly seen for one of the most popular object of protein nature ever imaged with AFM - bacteriorhodopsin (BR) covering the purple membrane (PM). This protein acts as a light driven proton pump to produce a finite difference in the proton concentration between the inside and outside of the cell membrane [256]. As summarized by Müller at al. [381], trimeric BR molecules arrange in a trigonal lattice of 6.2±0.2nm side length. Power spectra of the observed structure suggest lateral resolution as low as 0.45nm. Such excellent spatial resolution as well as extra sensitivity at low AFM cantilever loading ranging from 100 nN to 300 nN allows to investigate the major conformations of BR surfaces and to map the variability and the flexibility of individual polypeptide loops connecting transmembrane K-helices of BR. It is revealed that full conformation of the trimer is accomplished when loading force rises from 100 pN to 200 pN. Application of force up to 300 pN results in a deformation of the peripheral protrusions of the trimer and structural information of these areas is lost. Detailed analysis of images obtained allows to differentiate six K-helices of the protein according to their flexibility under load applied. Comparison of AFM data and atomic models of BR (to date six model are offered) derived from electron and X-ray diffraction experiments are presented. There is an excellent correspondence between the surface loops of the BR model and the AFM envelope. Standard deviation maps of the height measured by AFM correspond well with the relative distribution of B-factors of the atomic models as well as the coordinate variance between the models. S.D. maps help revealing the elasticity of single polypeptide loops. In contrast to electron and X-ray crystallography methods, AFM can be used to image surface structures of BR in a buffer solution and at room temperature similar to their physiological environment. All this evidence supports the idea that the AFM not only fulfills the prerequisites to directly monitor function related conformational changes of biological macromolecules [427, 1093, 1502, 1504] but can also characterize dynamic aspects of protein structures, such as their flexibility and variability.

In single molecule force-spectroscopy experiments, the protein complexes are tethered to both support and AFM tip to measure their cohesion when the AFM tip and the support are moved apart. This technique is employed to measure forces between pairs of interacting biological molecules [789, 790, 794, 795, 797, 1509] and forces required for the unfolding of titin domains [1512]. Protein complexes are imaged before and after the removal of individual subunits using the AFM tip as a dissecting nanotool [1096]. Based on these results, the single molecule imaging and single molecule force-spectroscopy capabilities of the AFM are combined to provide novel insights into the inter- and intramolecular interactions of proteins [1515, 1516]. Applied to membrane proteins, these combined techniques allow forces to be measured that anchor the protein in the native membrane, as well as forces required to unfold the tertiary and secondary structure of the protein [1516], and the protein to be imaged at subnanometer resolution.

Please, send all comments and suggestions concerning these pages to info@mikromasch.com.

ID Reference list (newly come references are marked red)
118 AFM studies of the nucleation and growth mechanisms of macromolecular crystals
Y.G. Kuznetsov, A.J. Malkin, A. McPherson
Journal of Crystal Growth, 196 (1999), 2-4, 489-502
119 Direct AFM observations of impurity effects on a lysozyme crystal
G. Sazaki, S.D. Durbin, S. Miyashita, H. Komatsu, T. Nakada
Journal of Crystal Growth, 196 (1999), 2-4, 503-510
222 An in situ AFM investigation of catalase crystallization
Y.G. Kuznetsov, A.J. Malkin, A. McPherson
Surface Science, 393 (1997), 1-3, 95-107
235 An in-situ AFM investigation of canavalin crystallization kinetics
T.A. Land, J.J. De Yoreo, J.D. Lee
Surface Science, 384 (1997), 1-3, 136-155
256 STM and AFM of bio/organic molecules and structures
A. Ikai
Surface Science Reports, 26 (1997), 261-332
300 a-amylase crystal growth investigated by in situ atomic force microscopy
J.P. Astier, D. Bokern, L. Lapena, S. Veesler
Journal of Crystal Growth, 226 (2001), 2-3, 294-302
306 Adsorption of proteins to fused-silica capillaries as probed by atomic force microscopy
J.J. Bonvent, R. Barberi, R. Bartolino, L. Capelli, P.G. Righetti
Journal of Chromatography A, 756 (1996), 1-2, 233-243
309 An atomic force microscopy investigation of protein crystal surface topography
Valeria Mollica, Alberto Borassi, Annalisa Relini, Ornella Cavalleri, Martino Bolognesi, Ranieri Rolandi, Alessandra Gliozzi
European Biophysics Journal, 30 (2001), 5, 313-318
381 Atomic force microscopy of native purple membrane
D.J. Müller, J.B. Heymann, F. Oesterhelt, C. Möller, H. Gaub, G. Büldt, A. Engel
Biochimica et Biophysica Acta (BBA)/Bioenergetics, 1460 (2000), 1, 27-38
427 Atomic force microscopy: a powerful tool to observe biomolecules at work
A. Engel, Y. Lyubchenko, D.J. Müller
Trends Cell Biol. 9 (1999) 77-80
445 Characterization of lacrymal component accumulation on worn soft contact lens surfaces by atomic force microscopy
J. Baguet, F. Sommer, V. Claudon-Eyl, T.M. Duc
Biomaterials, 16 (1995), 1, 3-9
522 High resolution surface structure of Escherichia coliGroES oligomer by atomic force microscopy
M. Jianxun, D.M. Czajkowsky, S. Sitong, H. Rouya, S. Zhifeng
FEBS Letters, 381 (1996), 1-2, 161-164
546 In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization
A.J. Malkin, A. McPherson, Y.G. Kuznetsov
Journal of Crystal Growth, 196 (1999), 2-4, 471-488
597 Mechanisms of protein and virus crystal growth: An atomic force microscopy study of canavalin and STMV crystallization
T.A. Land, J.J. De Yoreo, A.J. Malkin, Y.G. Kutznesov, A. McPherson
Journal of Crystal Growth, 166 (1996), 1-4, 893-899
677 Probing the organization of adsorbed protein layers: complementarity of atomic force microscopy, X-ray photoelectron spectroscopy and radiolabeling
Y.F. Dufrene, T.G. Marchal, P.G. Rouxhet
Applied Surface Science, 144-145 (1999), 638-643
696 Self-assembly of influenza hemagglutinin: studies of ectodomain aggregation by in situ atomic force microscopy
R.F. Epand, C.M. Yip, L.V. Chernomordik, D.L. LeDuc, Y.-K. Shin, R.M. Epand
Biochimica et Biophysica Acta (BBA)/Biomembranes, 1513 (2001), 2, 167-175
755 The advancement and structure of growth steps on thaumatin crystals visualized by atomic force microscopy at molecular resolution
A. McPherson, Y.G. Kuznetsov, A.J. Malkin, J. Konnert
Surface Science, 440 (1999), 1-2, 69-80
759 The evolution of growth modes and activity of growth sources on canavalin investigated by in situ atomic force microscopy
J.J. De Yoreo, T.A. Land
Journal of Crystal Growth, 208 (2000), 1-4, 623-637
789 Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy
G.U. Lee, D.A. Kidwell, R.J. Colton
Langmuir 10 (1994) 354-357
790 Direct measurement of the forces between complementary strands of DNA
G.U. Lee, L.A. Chrisey, R.J. Colton
Science 266 (1994) 771-773
794 Adhesion forces between individual ligand-receptor pairs
E.-L. Florin, V.T. Moy, H.E. Gaub
Science 264 (1994) 415- 417
795 Binding strength between cell adhesion proteoglycans measured by atomic force microscopy
U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.J. Guntherodt, G.N. Misevic
Science 267 (1995) 1173-1175
797 Specific antigen/antibody interactions measured by force microscopy
U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, H.J. Guntherodt
Biophys. J. 70 (1996) 2437-2441
804 A scanning force microscopy study of human serum albumin and porcine pancreas trypsin adsorption on mica surfaces
A.P. Quist, C.T. Reimann, B.U.R. Sundqvist, L.P. Bjorck, S.O. Oscarsson
Surface Science, 325 (1995), 1-2, l406-l412
869 Light-harvesting complex II in monocomponent and mixed lipid-protein monolayers
Z. Krupa, M. Matula, P. Kernen, U. Ziegler, W.I. Gruszecki, P. Wagner
Biochimica et Biophysica Acta (BBA)/Biomembranes, 1373 (1998), 2, 289-298
1081 a-Synuclein Membrane Interactions and Lipid Specificity
E. Jo, J. McLaurin, C.M. Yip, P. George-Hyslop, P.E. Fraser
J. Biol. Chem. 275 (2000) 34328-34334
1082 Review: Modulating Factors in Amyloid-Fibril Formation
J. McLaurin, D. Yang, C.M. Yip, P.E. Fraser
J. Struct. Biol. 130 (2000) 259-270
1083 The Heptameric Prepore of a Staphylococcal alpha-Hemolysin Mutant in Lipid Bilayers Imaged by Atomic Force Microscopy
Y. Fang, S. Cheley, H. Bayley, J. Yang
Biochemistry 36 (1997), 9518-9522
1084 New Approach for Atomic Force Microscopy of Membrane Proteins The Imaging of Cholera Toxin
J. Yang, L.K. Tamm, T.W. Tillack, Z. Shao
J. Mol. Biol. 229 (1993) 286-290
1085 Gramicidin A Aggregation in Supported Gel State Phosphatidylcholine Bilayers
J. Mou, D.M. Czajkowsky, Z. Shao
Biochemistry 35 (1996) 3222-3226
1086 Scanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite
H.Chang and A.J. Bard
J. Am. Chem. Soc. 113 (1991) 5588
1087 Lysozyme crystal growth studied by atomic force microscopy
S.D. Durbin, W.E. Carlson
J. Crystal Growth 122 (1992) 71
1088 In situ studies of protein crystal growth by atomic force microscopy
S.D. Durbin, W.E. Carlson, M.T. Saros
J. Phys. D: Appl. Phys. 26 (1993) B128
1089 Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope
J.H. Konnert, P. dAntonio, K.B. Ward
Acta Crystallogr. D 50 (1994) 603
1090 Mechanisms of Protein Crystal Growth: An Atomic Force Microscopy Study of Canavalin Crystallization
T.A. Land, A.J. Malkin, Yu.G. Kuznetsov, A. McPherson, J.J. De Yoreo
Phys. Rev. Lett. 75 (14) (1995) 2774
1091 Atomic Force Microscopy Studies of Surface Morphology and Growth Kinetics in Thaumatin Crystallization
A.J. Malkin, Yu.G. Kuznetsov,W. Glantz, A. McPherson
J. Phys. Chem. 100 (1996) 11736
1092 Defect Structure of Macromolecular Crystals
A.J. Malkin, Yu.G. Kuznetsov, A. McPherson
J. Struct. Biol. 117 (1996) 124
1093 Imaging crystals, polymers, and processes in water with the atomic force microscope
B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, P.K. Hansma
Science 243 (1989) 1586-1588
1095 Probing Single Biomolecules with Atomic Force Microscopy
J. Fritz, D. Anselmetti, J. Jarchow, X. Fernandez-Busquets
J. Sruct. Biol. 119 (1997) 165-171
1094 Native Escherichia coliOmpF porin surfaces probed by atomic force microscopy
F.A. Schabert, C. Henn, A. Engel
Science 268 (1995) 92-94
1096 Surface Analysis of the Photosystem I Complex by Electron and Atomic Force Microscopy
D. Fotiadis, D.J. Müller, G. Tsiotis, L. Hasler, P. Tittmann, T. Mini, P. Jeno, H. Gross, A. Engel
J. Mol. Biol. 283 (1998) 83-94
1097 Staphylococcal a-Hemolysin Can Form Hexamers in Phospholipid Bilayers
D.M. Czajkowsky, S. Sheng, Z. Shao
J. Mol. Biol. 276 (1998) 325-330
1098 High resolution AFM topographs of the Escherichia coliwater channel aquaporin Z
S. Scheuring, P. Ringler, M. Borgina, H. Stahlberg, D.J. Müller, P. Agre, A. Engel
EMBO J. 18 (1999) 4981-4987
1099 Electrostatically Balanced Subnanometer Imaging of Biological Specimens by Atomic Force Microscope
D.J. Müller, D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel
Biophys. J. 76 (1999) 1101-1111
1500 Mapping flexible protein domains at subnanometer resolution with the atomic force microscope
D.J. Müller, D. Fotiadis, A. Engel
FEBS Lett. 430 (1998) 105-111
1501 Conformational change of the hexagonally packed intermediate layer of Deinococcus radioduransmonitored by atomic force microscopy
D.J. Müller, W. Baumeister, A. Engel
J. Bacteriol. 178 (1996) 3025-3030
1502 Structural Changes in Native Membrane Proteins Monitored at Subnanometer Resolution with the Atomic Force Microscope: A Review
D.J. Müller, C.-A. Schoenenberger, F. Schabert, A. Engel
J. Struct. Biol. 119 (1997) 149-157
1503 Surface Structures of Native Bacteriorhodopsin Depend on the Molecular Packing Arrangement in the Membrane
D.J. Müller, H.-J. Sass, S. Müller, G. Büldt, A. Engel
J. Mol. Biol. 285 (1999) 1903-1909
1504 Voltage and pH-induced Channel Closure of Porin OmpF Visualized by Atomic Force Microscopy
D.J. Müller, A. Engel
J. Mol. Biol. 285 (1999) 1347-1351
1505 Force-induced Conformational Change of Bacteriorhodopsin
D.J. Müller, G. Büldt, A. Engel
J. Mol. Biol. 249 (1995) 239-243
1509 Adhesive forces between ligand and receptor measured by AFM
V.T. Moy, E.-L. Florin, H.E. Gaub
Coll. Surf. A93 (1994) 343-348
1512 Reversible unfolding of individual titin Ig-domains by AFM
M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub
Science 276 (1997) 1109-1112
1513 The molecular elasticity of the extracellular matrix protein tenascin
A.F. Oberhauser, P.E. Marszalek, H.P. Erickson, J.M. Fernandez
Nature 393 (1998) 181-185
1514 Mechanical and chemical unfolding of a single protein: A comparison
M. Carrion-Vazquez, A.F. Oberhauser, S.B. Fowler, P.E. Marszalek, S.E. Broedel, J. Clarke, J.M. Fernandez
Proc. Natl. Acad. Sci. USA 96 (1999) 3694-3699
1515 Controlled unzipping of a bacterial surface layer with atomic force microscopy
D.J. Müller, W. Baumeister, A. Engel
Proc. Natl. Acad. Sci. USA 96 (1999) 13170-13174
1516 Unfolding pathways of individual bacteriorhodopsins
F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. Gaub, D.J. Müller
Science 288 (2000) 143-146
1517 Atomic force microscopy of purple membranes
D.L. Worcester, R.G. Miller, P.J. Bryant
J. Microsc. 152 (1988) 817-821
1518 Imaging bacteriorhodopsin lattices in purple membranes with atomic force microscopy
D.L. Worcester, H.S. Kim, R.G. Miller, P.J. Bryant
J. Vac. Sci. Technol. A8 (1990) 403-405
1519 Imaging the membrane protein bacteriorhodopsin with the atomic force microscope
H.-J. Butt, K.H. Downing, P.K. Hansma
Biophys. J. 58 (1990) 1473-1480
1520 Imaging purple membranes dry and in water with the atomic force microscope
H.-J. Butt, C.B. Prater, P.K. Hansma
J. Vac. Sci. Technol. B9 (1991) 1193-1197
1521 Quantitative scanning tunneling and scanning force microscopy of organic materials
H.-J. Butt, R. Guckenberger, J.P. Rabe
Ultramicroscopy 46 (1992) 375-393
1522 Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy
D.J. Müller, F.A. Schabert, G. Büldt, A. Engel
Biophys. J. 68 (1995) 1681-1686
1523 Immuno-atomic force microscopy of purple membrane
D.J. Müller, C.A. Schoenenberger, G. Büldt, A. Engel
Biophys. J. 70 (1996) 1796-1802
1524 Tapping-Mode Atomic Force Microscopy Produces Faithful High-Resolution Images of Protein Surfaces
C. Möller, M. Allen, V. Elings, A. Engel, D.J. Müller
Biophys. J. 77 (1999) 1050-1058
1525 Scanning force microscopy and geometrical analysis of two-dimensional collagen network formation
M. Mertig, U. Thiele, J. Bradt, G. Leibiger, W. Pompe, H. Wendrock
Surf. Interface Anal. 25 (1997) 514
1526 Real-Time Observation of Plasma Protein Film Formation on Well-Defined Surfaces with Scanning Force Microscopy
T.C. Ta, M.T. Sykes, M.T. McDermott
Langmuir 14 (1998) 2435
1527 Collagen adsorption on poly(methyl methacrylate) : net-like structure formation upon drying
Ch.C. Dupont-Gillain, B. Nysten, P.G. Rouxhet
Polymer Int., 48, (1999), 271-276
37 Investigation of polystyrene nanoparticles and DNA-protein complexes by AFM with image reconstruction
C.F. Zhu, I. Lee, X. Wang, C. Wang, C. Bai
Applied Surface Science, 126 (1998), 3-4, 281-286
98 AFM force measurements on microtubule-associated proteins: the projection domain exerts a long-range repulsive force
R. Mukhopadhyay, J.H. Hoh
FEBS Letters, 505 (2002), 3, 374-378
127 In situ STM and AFM of the copper protein Pseudomonas aeruginosa azurin
E.P. Friis, J.E.T. Andersen, L.L. Madsen, P. Möller, J. Ulstrup
Journal of Electroanalytical Chemistry, 431 (1997), 1, 35-38
397 Atomic Force Microscopy Studies on Whey Proteins
C. Elofsson, P. Dejmek, M. Paulsson, H. Burling
International Dairy Journal, 7 (1997), 12, 813-819
481 Dynamics of Pseudomonas aeruginosa azurin and its Cys3Ser mutant at single-crystal gold surfaces investigated by cyclic voltammetry and atomic force microscopy
E.P. Friis, J.E.T. Andersen, L.L. Madsen, N. Bonander, P. Möller, J. Ulstrup
Electrochimica Acta, 42 (1997), 19, 2889-2897
540 Immunogold Localisation of P-glycoprotein in Supported Lipid Bilayers by Transmission Electron Microscopy and Atomic Force Microscopy
I. Ruspantini, M. Diociaiuti, R. Ippoliti, E. Lendaro, M. C. Gaudiano, M. Cianfriglia, P. Chistolini, G. Arancia, A. Molinari
Histochemical Journal, 33 (2001), 5, 305-309
545 In situ atomic force microscopy studies of protein and virus crystal growth mechanisms
A.J. Malkin, Y.G. Kuznetsov, W. Glantz, A. McPherson
Journal of Crystal Growth, 168 (1996), 1-4, 63-73
791 Effects of Discrete Protein-Surface Interactions in Scanning Force Microscopy Adhesion Force Measurements
Stuart J.K. and Hlady V.
Langmuir 11 (1995), 1368-1374
796 Detection and localization of individual antibody-antigen recognition events by atomic force microscopy
Hinterdorfer P., Baumgartner W., Gruber H.J., Schilcher K. and Schindler H.
Proc. Natl. Acad. Sci. USA 93 (1996), 3477-3481
949 The role of pulmonary surfactant protein C during the breathing cycle
H.-J. Galla, M. Sieber, M. Amrein, A. Von Nahmen, N. Bourdos
Thin Solid Films, 327-329 (1998), 632-635
964 Cell-surface receptors and proteins on platelet membranes imaged by scanning force microscopy using immunogold contrast enhancement
Eppell S.J., Simmons S.R., Albrecht R.M., Marchant R.E.
Biophys. J. 68 (1995), 671-680
967 Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscopy: A review.
Müller D.J., Schoenenberger C.A., Schabert F., Engel A. J.
Struct Biol 119 (1997), 149-157
974 Investigation of the image contrast of tapping-mode atomic force microscopy using protein-modified cantilever tips
You H.X., Yu L.
Biophys. J. 73 (1997), 3299-3308
986 Protein tracking and detection of protein motion using atomic force microscopy
Thomson N.H., Fritz M., Radmacher M., Cleveland J.P., Schmidt C.F., Hansma P.K.
Biophys. J. 70 (1996), 2421-2431
987 Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel proteins using atomic force microscopy
Henderson R.M., Schneider S., Li Q., Hornby D., White S.D.I., Oberleithner H.
Proc. Natl. Acad. Sci. USA 93 (1996), 8756-8760
1067 Study of dynamics of conformational transitions in membrane-protein complexes by means of scanning probe microscopy in native conditions
V.I. Lobyshev
Èíôîðìàoèîííûé áþëëåòåíü ÐÔÔÈ (rus), 4 (1996), 4, 542
1073 The application of electrochemical scanning probe microscopy to the interpretation of metalloprotein voltammetry
J.J. Davis, H.A.O. Hill, A.M. Bond
Coordination Chemistry Reviews, 200-202 (2000), 411 - 442
1507 Imaging single-stranded DNA, antigen-antibody reaction and polymerized Langmuir-Blodgett films with an AFM
A.L. Weisenhorn, H.E. Gaub, H.G. Hansma, R.L. Sinsheimer, G.L. Kelderman and P.K. Hansma
Scanning Microsc. 4 (1990) 511
1580 Probing protein-protein interactions in real time [In Process Citation]
Viani M.B., Pietrasanta L.I., Thompson J.B., Chand A., Gebeshuber I.C., Kindt J.H., Richter M., Hansma H.G., Hansma P.K.
Nat Struct Biol 7 (2000), 8, 644-647
1335 Surfaces coated with protein layers: a surface force and ESCA study
E. Blomberg, P. M. Claesson, J. C. Fröberg
Biomaterials 19 (1998) 371-386
1355 Conformational changes, flexibilities and intramolecular forces observed on individual proteins using AFM
Daniel J. Müller and Andreas Engel
RIKEN Review 36 (2001) 29-31
1356 From art to science in protein crystallization by means of thin-film nanotechnology
Eugenia Pechkova and Claudio Nicolini
Nanotechnology 13 (2002) 460-464
1369 SPM for Functional Identification of Individual Biomolecules
R. Ros, F. Schwesinger, C. Padeste, A. Plückthun, D. Anselmetti, Hans-Joachim Güntherodt, and Louis Tiefenauer
SPIE, 3607 (1999) 84-88
1397 Reversible stretching of a monomeric unit in a dimeric bovine carbonic anhydrase B with the atomic force microscope
Tong Wang, Hideo Arakawa and Atsushi Ikai
Ultramicroscopy, Vol. 91 (1-4) (2002) pp. 253-259
1438 Protein Stretching IV: Analysis of Force-Extension Curves
A. Ikai and T. Wang
Jpn. J. Appl. Phys., 39 (2000) 3784-3788
1669 Antibody recognition imaging by force microscopy
A. Raab, W. Han, D. Badt, S. J. Smith-Gill, S. M. Lindsay, H. Schindler and P. Hinterdorfer
Nature Biotechnology, 17 (1999) 9, 902-905
1710 Multi-bead-and-spring model to interpret protein detachment studied by AFM force spectroscopy
Csilla Gergely, Joseph Hemmerle, Pierre Schaaf, J. K. Heinrich Horber, Jean-Claude Voegel, and Bernard Senger
Biophys. J., 83 (2002) 706 - 722
1716 Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules
Bo Zhang and John Spencer Evans
Biophys. J., 80 (2001) 597 - 605
1717 Atomic force microscopy and electron microscopy analysis of retrovirus gag proteins assembled in vitro on lipid bilayers
Guy Zuber and Eric Barklis
Biophys. J., 78 (2000) 373 - 384
1718 Structural studies of a crystalline insulin analog complex with protamine by atomic force microscopy
Christopher M. Yip, Mark L. Brader, Bruce H. Frank, Michael R. DeFelippis, and Michael D. Ward
Biophys. J., 78 (2000) 466 - 473
1730 Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy
Philippe Desmeules, Michel Grandbois, Vladimir A. Bondarenko, Akio Yamazaki, and Christian Salesse
Biophys. J., 82 (2002) 3343 - 3350
1733 High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes
Alvaro San Paulo and Ricardo Garcia
Biophys. J., 78 (2000) 1599 - 1605
1741 Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation
Robert B. Best, Bin Li, Annette Steward, Valerie Daggett, and Jane Clarke
Biophys. J., 81 (2001) 2344 - 2356
1742 Direct visualization of ligand-protein interactions using atomic force microscopy
Calum S. Neish, Ian L. Martin, Robert M. Henderson, and J. Michael Edwardson
Br. J. Pharmacol., 135 (2002) 1943 - 1950
1744 Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kB transcriptional activation and cytokine secretion
Chen-Hsiung Yeh, Lydia Sturgis, Joe Haidacher, Xue-Nong Zhang, Sidney J. Sherwood, Robert J. Bjercke, Ondrej Juhasz, Michael T. Crow, Ronald G. Tilton, and Larry Denner
Diabetes, 50 (2001) 1495 - 1504
1750 Sampling the conformational space of membrane protein surfaces with the AFM
Simon Scheuring, Daniel J. Muller, Henning Stahlberg, Hans-Andreas Engel and Andreas Engel
European Biophysics Journal, 31 (2002), 172-178
1751 Two-dimensional crystals: a powerful approach to assess structure, function anddynamics of membrane proteins
Henning Stahlberg, Dimitrios Fotiadis, Simon Scheuring, Herve Remigy, Thomas Braun, Kuora Mitsuoka, Yoshinori Fujiyoshi and Andreas Engel
FEBS letters, 504 (2001) 3, 166-172
1759 Multilayer formation upon compression of surfactant monolayers depends on protein concentration as well as lipid composition. An atomic force microscopy study
Robert V. Diemel, Margot M. E. Snel, Alan J. Waring, Frans J. Walther, Lambert M. G. van Golde, Gunther Putz, Henk P. Haagsman, and Joseph J. Batenburg
J. Biol. Chem, 277 (2002) 21179 - 21188
1766 Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes
Ken I. Hohmura, Yutakatti Itokazu, Shige H. Yoshimura, Gaku Mizuguchi, Yu-suke Masamura, Kunio Takeyasu, Yasushi Shiomi, Toshiki Tsurimoto, Hidehiro Nishijima, Seiji Akita, and Yoshikazu Nakayama
J. Electron Microsc. (Tokyo), 49 (2000) 415 - 421
1783 Imaging streptavidin 2D-crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope
Simon Scheuring, Daniel J. Muller, Philippe Ringler, J. Bernard Heymann, and Andreas Engel
Journal of Microscopy, 193 (1999) pp. 28-35
1785 The aquaporin sidedness revisited
Simon Scheuring, Peter Tittmann, Henning Stahlberg, Philippe Ringler, Mario Borgnia, Peter Agre, Heinz Gross, and Andreas Engel
Journal of Molecular Biology, 299 (2000) 5, pp. 1271-1278
1786 Direct observation of postadsorption aggregation of antifreeze glycoproteins on silicates
Ph. Lavalle, A. L. DeVries, C.-C. C. Cheng, S. Scheuring, and J. J. Ramsden
Langmuir, 16 (2000) 13, pp. 5785-5789
1793 UV light-damaged DNA and its interaction with human replication protein A: an atomic force microscopy study
M. Lysetska, A. Knoll, D. Boehringer, T. Hey, G. Krauss, and G. Krausch
Nucleic Acids Res., 30 (2002) 2686 - 2691
1800 Cadherin interaction probed by atomic force microscopy
W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, and D. Drenckhahn
PNAS, 97 (2000) 4005 - 4010
1807 Stepwise unfolding of titin under force-clamp atomic force microscopy
Andres F. Oberhauser, Paul K. Hansma, Mariano Carrion-Vazquez, and Julio M. Fernandez
PNAS, 98 (2001) 468 - 472
1810 Atomic force microscopy reveals the mechanical design of a modular protein
Hongbin Li, Andres F. Oberhauser, Susan B. Fowler, Jane Clarke, and Julio M. Fernandez
PNAS, 97 (2000) 6527 - 6531
1812 Unbinding process of adsorbed proteins under external stress studied by atomic force microscopy spectroscopy
C. Gergely, J.-C. Voegel, P. Schaaf, B. Senger, M. Maaloum, J. K. H. Horber, and J. Hemmerle
PNAS, 97 (2000) 10802 - 10807
1813 Unfolding mechanics of holo- and apocalmodulin studied by the atomic force microscope
Rukman Hertadi and Atsushi Ikai
Protein Sci., 11 (2002) 1532 - 1538
1814 Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy
Annette Steward, Jose Luis Toca-Herrera, and Jane Clarke
Protein Sci., 11 (2002) 2179 - 2183
1816 Conformational changes, flexibilities and intramolecular forces observed on individual proteins using AFM
Daniel J. Muller, Dimitrios Fotiadis, Clemens Moller, Simon Scheuring, and Andreas Engel
Single Molecules 1 (2000) 2, 115-118
1817 Single proteins observed by atomic force microscopy
Simon Scheuring, Dimitrios Fotiadis, Clemens Moller, Shirley A. Muller, Andreas Engel and Daniel J. Muller
Single Molecules 2 (2001) 2, 59-67
1945 Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth
C. M. Yip, M. D. Ward
Biophys. J., 71 (1996) 2, 1071-1078
  The discrimination of IgM and IgG type antibodies and Fab' and F(ab)2 antibody fragments on an industrial substrate using scanning force microscopy
C. J. Roberts, M. C. Davies, S. J. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, G. D. Yearwood, J. C. Edwards
Ultramicroscopy, 62 (1996) 3, 149-155
1958 Atomic force microscopy proposes a novel model for stem-loop structure that binds a heat shock protein in the Staphylococcus aureus HSP70 operon
T. Ohta, S. Nettikadan, F. Tokumasu, H. Ideno, Y. Abe, M. Kuroda, H. Hayashi, K. Takeyasu
Biochemical and Biophysical Research Communications, 226 (1996) 3, 730-734
1973 Atomic force microscopy visualizes ATP-dependent dissociation of multimeric TATA-binding protein before translocation into the cell nucleus
H. Oberleithner, S. Schneider, J. O. Bustamante
Pflugers. Arch., 432 (1996) 5, 839-844
1880 Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy
G. Folprecht, S. Schneider, H. Oberleithner
Pflugers. Arch., 432 (1996) 5, 831-838
1946 Atomic Force Microscopy of Interfacial Protein Films
A. P. Gunning, P. J. Wilde, D. C. Clark, V. J. Morris, M. L. Parker, P. A. Gunning
J. Colloid. Interface. Sci., 183 (1996) 2, 600-602
2171 Human low density lipoprotein and human serum albumin adsorption onto model surfaces studied by total internal reflection fluorescence and scanning force microscopy
C. H. Ho, D. W. Britt, V. Hlady
J. Mol. Recognit., 9 (1996) 5-6, 444-455
2494 The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy
W. B. Stine, Jr., S. W. Snyder, U. S. Ladror, W. S. Wade, M. F. Miller, T. J. Perun, T. F. Holzman, G. A. Krafft
J. Protein Chem., 15 (1996) 2, 193-203
2090 Direct observation of protein secondary structure in gas vesicles by atomic force microscopy
T. J. McMaster, M. J. Miles, A. E. Walsby
Biophys. J., 70 (1996) 5, 2432-2436
2006 Chaperonins GroEL and GroES: views from atomic force microscopy
J. Mou, S. Sheng, R. Ho, Z. Shao
Biophys. J., 71 (1996) 4, 2213-2221
2115 Electron and atomic force microscopy of membrane proteins
J. B. Heymann, D. J. Muller, K. Mitsuoka, A. Engel
Current Opinion in Structural Biology, 7 (1997) 4, 543-549
2188 Imaging of the Early Events of Classical Complement Activation Using Antibodies and Atomic Force Microscopy
auml, B. livaara, A. Askendal, Lundstr, ouml, I. I. m, P. Tengvall
J. Colloid. Interface. Sci., 187 (1997) 1, 121-127
2508 Three dimensional structure of human fibrinogen under aqueous conditions visualized by atomic force microscopy
R. E. Marchant, M. D. Barb, J. R. Shainoff, S. J. Eppell, D. L. Wilson, C. A. Siedlecki
Thromb Haemost, 77 (1997) 6, 1048-1051
2322 Observation of metastable Abeta amyloid protofibrils by atomic force microscopy
J. D. Harper, S. S. Wong, C. M. Lieber, P. T. Lansbury
Chem. Biol., 4 (1997) 2, 119-125
2323 Observing interactions between the IgG antigen and anti-IgG antibody with AFM
P. C. Zhang, C. Bai, P. K. Ho, Y. Dai, Y. S. Wu
IEEE Eng Med Biol Mag, 16 (1997) 2, 42-46
2150 Gi regulation of secretory vesicle swelling examined by atomic force microscopy
B. P. Jena, S. W. Schneider, J. P. Geibel, P. Webster, H. Oberleithner, K. C. Sritharan
Proc. Natl. Acad. Sci. USA, 94 (1997) 24, 13317-13322
2379 Scanning (atomic) force microscopy imaging of earthworm haemoglobin calibrated with spherical colloidal gold particles
S. Xu, M. F. Arnsdorf
J. Microsc., 187 (1997) 1, 43-53
2389 Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin
H. Nakajima, Y. Kunioka, K. Nakano, K. Shimizu, M. Seto, T. Ando
Biochemical and Biophysical Research Communications, 234 (1997) 1, 178-182
2474 Tertiary structure of the hepatic cell protein fibrinogen in fluid revealed by atomic force microscopy
D. J. Taatjes, A. S. Quinn, R. J. Jenny, P. Hale, E. G. Bovill, J. McDonagh
Cell. Biol. Int., 21 (1997) 11, 715-726
2093 Direct visualization of collagen-bound proteoglycans by tapping-mode atomic force microscopy
M. Raspanti, A. Alessandrini, V. Ottani, A. Ruggeri
J. Struct. Biol., 119 (1997) 2, 118-122
1935 Atomic force microscopy of collagen molecules. Surface morphology of segment-long-spacing (SLS) crystallites of collagen
Y. Fujita, K. Kobayashi, T. Hoshino
J. Electron Microsc. (Tokyo), 46 (1997) 4, 321-6
2371 Reversible unfolding of individual titin immunoglobulin domains by AFM
M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub
Science, 276 (1997) 5315, 1109-1112
2218 Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies
M. Yaneva, T. Kowalewski, M. R. Lieber
EMBO J., 16 (1997) 16, 5098-5112
2242 Ku proteins join DNA fragments as shown by atomic force microscopy
D. Pang, S. Yoo, W. S. Dynan, M. Jung, A. Dritschilo
Cancer. Res., 57 (1997) 8, 1412-1415
2060 Cryo-atomic force microscopy of smooth muscle myosin
Y. Zhang, Z. Shao, A. P. Somlyo, A. V. Somlyo
Biophys. J., 72 (1997) 3, 1308-1318
1869 AFM analysis of DNA-protamine complexes bound to mica
M. J. Allen, E. M. Bradbury, R. Balhorn
Nucleic Acids Res., 25 (1997) 11, 2221-2226
2550 Visualization of poly(A)-binding protein complex formation with poly(A) RNA using atomic force microscopy
B. L. Smith, D. R. Gallie, H. Le, P. K. Hansma
J. Struct. Biol., 119 (1997) 2, 109-117
2434 Structural and morphological characterization of ultralente insulin crystals by atomic force microscopy: evidence of hydrophobically driven assembly
C. M. Yip, M. R. DeFelippis, B. H. Frank, M. L. Brader, M. D. Ward
Biophys. J., 75 (1998) 3, 1172-1179
1936 Atomic force microscopy of crystalline insulins: the influence of sequence variation on crystallization and interfacial structure
C. M. Yip, M. L. Brader, M. R. DeFelippis, M. D. Ward
Biophys. J., 74 (1998) 5, 2199-2209
1915 Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins
A. Vinckier, P. Gervasoni, F. Zaugg, U. Ziegler, P. Lindner, P. Groscurth, A. Pluckthun, G. Semenza
Biophys. J., 74 (1998) 6, 3256-3263
2199 Imaging two-dimensional arrays of soluble proteins by atomic force microscopy in contact mode using a sharp supertip
T. Furuno, H. Sasabe, A. Ikegami
Ultramicroscopy, 70 (1998) 3, 125-131
2490 The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy
M. Rief, M. Gautel, A. Schemmel, H. E. Gaub
Biophys. J., 75 (1998) 6, 3008-3014
2262 Mapping a protein-binding site on straightened DNA by atomic force microscopy
H. Yokota, D. A. Nickerson, B. J. Trask, G. van den Engh, M. Hirst, I. Sadowski, R. Aebersold
Anal. Biochem., 264 (1998) 2, 158-164
2515 TM-AFM Threshold Analysis of Macromolecular Orientation: A Study of the Orientation of IgG and IgE on Mica Surfaces
M. Bergkvist, J. Carlsson, T. Karlsson, S. Oscarsson
J. Colloid. Interface. Sci., 206 (1998) 2, 475-481
2319 Observation of geometric structure of collagen molecules by atomic force microscopy
V. Baranauskas, B. C. Vidal, N. A. Parizotto
Appl. Biochem. Biotechnol., 69 (1998) 2, 91-97
2138 Fibrous long spacing collagen ultrastructure elucidated by atomic force microscopy
M. F. Paige, J. K. Rainey, M. C. Goh
Biophys. J., 74 (1998) 6, 3211-3216
1981 Binding contribution between synaptic vesicle membrane and plasma membrane proteins in neurons: an AFM study
K. C. Sritharan, A. S. Quinn, D. J. Taatjes, B. P. Jena
Cell. Biol. Int., 22 (1998) 9-10, 649-655
2155 Growth of Protein 2-D Crystals on Supported Planar Lipid Bilayers Imaged in Situ by AFM
I. I. Reviakine, W. Bergsma-Schutter, A. Brisson
J. Struct. Biol., 121 (1998) 3, 356-361
2511 Thyroid stimulating hormone assays based on the detection of gold conjugates by scanning force microscopy
A. Perrin, A. Theretz, B. Mandrand
Anal. Biochem., 256 (1998) 2, 200-206
2412 Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy
O. H. Willemsen, M. M. Snel, K. O. van der Werf, B. G. de Grooth, J. Greve, P. Hinterdorfer, H. J. Gruber, H. Schindler, Y. van Kooyk, C. G. Figdor
Biophys. J., 75 (1998) 5, 2220-2228
2553 Visualization of trp repressor and its complexes with DNA by atomic force microscopy
E. Margeat, C. Le Grimellec, C. A. Royer
Biophys. J., 75 (1998) 6, 2712-2720
2174 Identification of microphases in mixed alpha- and omega-gliadin protein films investigated by atomic force microscopy
T. J. McMaster, M. J. Miles, L. Wannerberger, A. C. Eliasson, P. R. Shewry, A. S. Tatham
J. Agric. Food. Chem., 47 (1999) 12, 5093-5099
2182 Imaging of collagen type III in fluid by atomic force microscopy
D. J. Taatjes, A. S. Quinn, E. G. Bovill
Microsc. Res. Tech., 44 (1999) 5, 347-352
2302 Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy
C. Ionescu-Zanetti, R. Khurana, J. R. Gillespie, J. S. Petrick, L. C. Trabachino, L. J. Minert, S. A. Carter, A. L. Fink
Proc. Natl. Acad. Sci. USA, 96 (1999) 23, 13175-13179
2234 Investigation of protein partnerships using atomic force microscopy
D. J. Ellis, T. Berge, J. M. Edwardson, R. M. Henderson
Microsc. Res. Tech., 44 (1999) 5, 368-377
2369 Reflection interference contrast microscopy combined with scanning force microscopy verifies the nature of protein-ligand interaction force measurements
J. K. Stuart, V. Hlady
Biophys. J., 76 (1999) 1/1, 500-508
2077 Determining the molecular-packing arrangements on protein crystal faces by atomic force microscopy
H. Li, M. A. Perozzo, J. H. Konnert, A. Nadarajah, M. L. Pusey
Acta Crystallogr. D: Biol. Crystallogr., 55 (1999) 5, 1023-1035
1953 Atomic force microscopy of the submolecular architecture of hydrated ocular mucins
T. J. McMaster, M. Berry, A. P. Corfield, M. J. Miles
Biophys. J., 77 (1999) 1, 533-541
1914 Atomic force microscopy captures length phenotypes in single proteins
M. Carrion-Vazquez, P. E. Marszalek, A. F. Oberhauser, J. M. Fernandez
Proc. Natl. Acad. Sci. USA, 96 (1999) 20, 11288-11292
1876 AFM study of membrane proteins, cytochrome P450 2B4, and NADPH-cytochrome P450 reductase and their complex formation
O. I. Kiselyova, I. V. Yaminsky, Y. D. Ivanov, I. P. Kanaeva, V. Y. Kuznetsov, A. I. Archakov
Arch. Biochem. Biophys., 371 (1999) 1, 1-7
1982 Binding forces of hepatic microsomal and plasma membrane proteins in normal and pancreatitic rats: an AFM force spectroscopic study
L. A. Slezak, A. S. Quinn, K. C. Sritharan, J. P. Wang, G. Aspelund, D. J. Taatjes, D. K. Andersen
Microsc. Res. Tech., 44 (1999) 5, 363-367
2560 Watching amyloid fibrils grow by time-lapse atomic force microscopy
C. Goldsbury, J. Kistler, U. Aebi, T. Arvinte, G. J. Cooper
J. Mol. Biol., 285 (1999) 1, 33-39
2103 Dynamics of astrocyte adhesion as analyzed by a combination of atomic force microscopy and immuno-cytochemistry: the involvement of actin filaments and connexin 43 in the early stage of adhesion
Y. Yamane, H. Shiga, H. Asou, H. Haga, K. Kawabata, K. Abe, E. Ito
Arch. Histol. Cytol., 62 (1999) 4, 355-361
2076 Determining the molecular-growth mechanisms of protein crystal faces by atomic force microscopy
H. Li, A. Nadarajah, M. L. Pusey
Acta Crystallogr. D: Biol. Crystallogr., 55 (1999) 5, 1036-1045
2414 Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy
P. P. Lehenkari, M. A. Horton
Biochemical and Biophysical Research Communications, 259 (1999) 3, 645-650
2088 Direct measurement of the viscoelasticity of adsorbed protein layers using atomic force microscopy
C. Nemes, N. Rozlosnik, J. J. Ramsden
Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 60 (1999) 2/A, R1166-R1169
2468 Surface-dependent conformations of human fibrinogen observed by atomic force microscopy under aqueous conditions
P. S. Sit, R. E. Marchant
Thromb Haemost, 82 (1999) 3, 1053-1060
2095 Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM
A. N. Parbhu, W. G. Bryson, R. Lal
Biochemistry, 38 (1999) 36, 11755-11761
2429 Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy
H. Yokota, J. Sunwoo, M. Sarikaya, G. van den Engh, R. Aebersold
Anal. Chem., 71 (1999) 19, 4418-4422
2092 Direct observation of the anchoring process during the adsorption of fibrinogen on a solid surface by force-spectroscopy mode atomic force microscopy
J. Hemmerle, S. M. Altmann, M. Maaloum, J. K. Horber, L. Heinrich, J. C. Voegel, P. Schaaf
Proc. Natl. Acad. Sci. USA, 96 (1999) 12, 6705-6710
2032 Collagen II containing a Cys substitution for Arg-alpha1-519. Analysis by atomic force microscopy demonstrates that mutated monomers alter the topography of the surface of collagen II fibrils
E. Adachi, O. Katsumata, S. Yamashina, D. J. Prockop, A. Fertala
Matrix. Biol., 18 (1999) 2, 189-196
2473 Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces
C. Moller, M. Allen, V. Elings, A. Engel, D. J. Muller
Biophys. J., 77 (1999) 2, 1150-1158
2419 Single protein misfolding events captured by atomic force microscopy
A. F. Oberhauser, P. E. Marszalek, M. Carrion-Vazquez, J. M. Fernandez
Nat. Struct. Biol., 6 (1999) 11, 1025-1028
2465 Surface topography of the p3 and p6 annexin V crystal forms determined by atomic force microscopy
I. Reviakine, W. Bergsma-Schutter, C. Mazeres-Dubut, N. Govorukhina, A. Brisson
J. Struct. Biol., 131 (2000) 3, 234-239
2081 Different patterns of collagen-proteoglycan interaction: a scanning electron microscopy and atomic force microscopy study
M. Raspanti, T. Congiu, A. Alessandrini, P. Gobbi, A. Ruggeri
Eur. J. Histochem., 44 (2000) 4, 335-343
2176 Imaging and mapping heparin-binding sites on single fibronectin molecules with atomic force microscopy
H. Lin, R. Lal, D. O. Clegg
Biochemistry, 39 (2000) 12, 3192-3196
1954 Atomic force microscopy of the three-dimensional crystal of membrane protein, OmpC porin
H. Kim, R. M. Garavito, R. Lal
Colloids. Surf. B. Biointerfaces, 19 (2000) 4, 347-355
2080 Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy
W. Dettmann, M. Grandbois, S. Andre, M. Benoit, A. K. Wehle, H. Kaltner, H. J. Gabius, H. E. Gaub
Arch. Biochem. Biophys., 383 (2000) 2, 157-170
2123 Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy
C. Yuan, A. Chen, P. Kolb, V. T. Moy
Biochemistry, 39 (2000) 33, 10219-10223
2210 Individual plasma proteins detected on rough biomaterials by phase imaging AFM
N. B. Holland, R. E. Marchant
J. Biomed. Mater. Res., 51 (2000) 3, 307-315
2059 Cryoatomic force microscopy of filamentous actin
Z. Shao, D. Shi, A. V. Somlyo
Biophys. J., 78 (2000) 2, 950-958
1977 Atomic force microscopy-based detection of binding and cleavage site of matrix metalloproteinase on individual type II collagen helices
H. B. Sun, G. N. Smith, Jr., K. A. Hasty, H. Yokota
Anal. Biochem., 283 (2000) 2, 153-158
2215 In-situ atomic force microscopy study of beta-amyloid fibrillization
H. K. Blackley, G. H. Sanders, M. C. Davies, C. J. Roberts, S. J. Tendler, M. J. Wilkinson
J. Mol. Biol., 298 (2000) 5, 833-840
1941 Atomic force microscopy of gastric mucin and chitosan mucoadhesive systems
M. P. Deacon, S. McGurk, C. J. Roberts, P. M. Williams, S. J. Tendler, M. C. Davies, S. S. Davis, S. E. Harding
Biochem. J., 348 (2000) 3, 557-63
2502 The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force microscopy
S. Yamamoto, H. Hashizume, J. Hitomi, M. Shigeno, S. Sawaguchi, H. Abe, T. Ushiki
Arch. Histol. Cytol., 63 (2000) 2, 127-135
2532 Unfolding forces of titin and fibronectin domains directly measured by AFM
M. Rief, M. Gautel, H. E. Gaub
Adv. Exp. Med. Biol., 481 (2000) 129-36 (discussion 137-141)
2391 Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation
P. Odetti, I. Aragno, R. Rolandi, S. Garibaldi, S. Valentini, L. Cosso, N. Traverso, D. Cottalasso, M. A. Pronzato, U. M. Marinari
Diabetes. Metab. Res. Rev., 16 (2000) 2, 74-81
1865 Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy
C. A. Johnson, Y. Yuan, A. M. Lenhoff
J. Colloid. Interface. Sci., 223 (2000) 2, 261-272
2266 Mapping interfacial chemistry induced variations in protein adsorption with scanning force microscopy
T. C. Ta, M. T. McDermott
Anal. Chem., 72 (2000) 11, 2627-2634
2353 Probing protein-peptide-protein molecular architecture by atomic force microscopy and surface plasmon resonance
M. M. Stevens, S. Allen, W. C. Chan, M. C. Davies, C. J. Roberts, S. J. Tendler, P. M. Williams
Analyst, 125 (2000) 2, 245-250
2405 Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy
J. Moradian-Oldak, M. L. Paine, Y. P. Lei, A. G. Fincham, M. L. Snead
J. Struct. Biol., 131 (2000) 1, 27-37
2321 Observation of human corneal and scleral collagen fibrils by atomic force microscopy
S. Yamamoto, J. Hitomi, S. Sawaguchi, H. Abe, M. Shigeno, T. Ushiki
Jpn. J. Ophthalmol., 44 (2000) 3, 318
1846 X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin
T. P. Ko, Y. G. Kuznetsov, A. J. Malkin, J. Day, A. McPherson
Acta Crystallogr. D: Biol. Crystallogr., 57 (2001) 6, 829-839
2530 Ultrastructure and assembly of segmental long spacing collagen studied by atomic force microscopy
M. F. Paige, M. C. Goh
Micron, 32 (2001) 3, 355-361
2427 Spin-column isolation of DNA-protein interactions from complex protein mixtures for AFM imaging
P. R. Hoyt, M. J. Doktycz, R. J. Warmack, D. P. Allison
Ultramicroscopy, 86 (2001) 1-2, 139-143
1858 A tapping mode AFM study of collapse and denaturation in dentinal collagen
F. El Feninat, T. H. Ellis, E. Sacher, I. Stangel
Dent. Mater., 17 (2001) 4, 284-288
2554 Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution
D. Shi, A. V. Somlyo, A. P. Somlyo, Z. Shao
J. Microsc., 201 (2001) 3, 377-382
2466 Surface ultrastructure of collagen fibrils and their association with proteoglycans in human cornea and sclera by atomic force microscopy and energy-filtering transmission electron microscopy
A. Miyagawa, M. Kobayashi, Y. Fujita, O. Hamdy, K. Hirano, M. Nakamura, Y. Miyake
Cornea, 20 (2001) 6, 651-656
2421 Single-molecule imaging by atomic force microscopy of the native chaperonin complex of the thermophilic archaeon Sulfolobus solfataricus
F. Valle, G. Dietler, P. Londei
Biochemical and Biophysical Research Communications, 288 (2001) 1, 258-262
1948 Atomic force microscopy of nonhydroxy galactocerebroside nanotubes and their self-assembly at the air-water interface, with applications to myelin
B. Ohler, I. Revenko, C. Husted
J. Struct. Biol., 133 (2001) 1, 1-9
2349 Potential-induced resonant tunneling through a redox metalloprotein investigated by electrochemical scanning probe microscopy
P. Facci, D. Alliata, S. Cannistraro
Ultramicroscopy, 89 (2001) 4, 291-298
2177 Imaging and mapping protein-binding sites on DNA regulatory regions with atomic force microscopy
F. Moreno-Herrero, P. Herrero, J. Colchero, A. M. Baro, F. Moreno
Biochemical and Biophysical Research Communications, 280 (2001) 1, 151-157
1846 X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin
T. P. Ko, Y. G. Kuznetsov, A. J. Malkin, J. Day, A. McPherson
Acta Crystallogr. D: Biol. Crystallogr., 57 (2001) 6, 829-839
2195 Imaging the native structure of the chaperone protein GroEL without fixation using atomic force microscopy
F. Valle, J. A. Derose, G. Dietler, M. Kawe, A. Pluckthun, G. Semenza
J. Microsc., 203 (2001) 2, 195-198
1866 Adsorption and Bioactivity of Protein A on Silicon Surfaces Studied by AFM and XPS
M. C. Coen, R. Lehmann, P. Groning, M. Bielmann, C. Galli, L. Schlapbach
J. Colloid. Interface. Sci., 233 (2001) 2, 180-189
1872 AFM imaging in solution of protein-DNA complexes formed on DNA anchored to a gold surface
O. Medalia, J. Englander, R. Guckenberger, J. Sperling
Ultramicroscopy, 90 (2001) 2-3, 103-112
1856 A study of fibrous long spacing collagen ultrastructure and assembly by atomic force microscopy
M. F. Paige, J. K. Rainey, M. C. Goh
Micron, 32 (2001) 3, 341-353
2356 Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy
H. B. Wen, A. G. Fincham, J. Moradian-Oldak
Matrix. Biol., 20 (2001) 5-6, 387-395
1892 Analysis of protein crystal growth at molecular resolution by atomic force microscopy
M. Wiechmann, O. Enders, C. Zeilinger, H. A. Kolb
Ultramicroscopy, 86 (2001) 1-2, 159-166
2232 Investigation of microcontact transfer of proteins from a selectively plasma treated elastomer stamp by fluorescence microscopy and force microscopy
X. Feng, C. J. Roberts, D. A. Armitage, M. C. Davies, S. J. Tendler, S. Allen, P. M. Williams
Analyst, 126 (2001) 7, 1100-1104
1909 Atomic force microscopy and proteins
L. P. da Silva
Protein Pept. Lett., 9 (2002) 2, 117-126
2049 Conformations, flexibility, and interactions observed on individual membrane proteins by atomic force microscopy
D. J. Muller, A. Engel
Methods Cell Biol., 68 (2002) 257-299
1845 What can atomic force microscopy tell us about protein folding?
R. B. Best, J. Clarke
Chem. Commun. (Cambridge), 3 (2002) , 183-192
1983 Binding of dentin noncollagenous matrix proteins to biological mineral crystals: an atomic force microscopy study
M. L. Wallwork, J. Kirkham, H. Chen, S. X. Chang, C. Robinson, D. A. Smith, B. H. Clarkson
Calcif. Tissue. Int., 71 (2002) 3, 249-255
2561 What can atomic force microscopy tell us about protein folding?
R. B. Best, J. Clarke
Chem. Commun. (Cambridge), 3 (2002) 183-192
2498 The scanning probe microscopy of metalloproteins and metalloenzymes
J. J. Davis, H. A. Hill
Chem. Commun. (Cambridge), 5 (2002) 393-401
2435 Structural aspects of the extracellular matrix of the tendon: an atomic force and scanning electron microscopy study
M. Raspanti, T. Congiu, S. Guizzardi
Arch. Histol. Cytol., 65 (2002) 1, 37-43
2320 Observation of human corneal and scleral collagen fibrils by atomic force microscopy
S. Yamamoto, J. Hitomi, S. Sawaguchi, H. Abe, M. Shigeno, T. Ushiki
Jpn. J. Ophthalmol., 46 (2002) 5, 496-501
2320 The backbone conformational entropy of protein folding: experimental measures from atomic force microscopy
J. B. Thompson, H. G. Hansma, P. K. Hansma, K. W. Plaxco
J. Mol. Biol., 322 (2002) 3, 645-652
2417 Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy
S. Wielert-Badt, P. Hinterdorfer, H. J. Gruber, J. T. Lin, D. Badt, B. Wimmer, H. Schindler, R. K. Kinne
Biophys. J., 82 (2002) 5, 2767-2774
1984 Binding of discoidin domain receptor 2 to collagen I: an atomic force microscopy investigation
G. Agarwal, L. Kovac, C. Radziejewski, S. J. Samuelsson
Biochemistry, 41 (2002) 37, 11091-11098
2416 Single molecule imaging of supported planar lipid bilayer--reconstituted human insulin receptors by in situ scanning probe microscopy
A. Slade, J. Luh, S. Ho, C. M. Yip
J. Struct. Biol., 137 (2002) 3, 283-291
2140 Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy
S. Ikeda, V. J. Morris
Biomacromolecules, 3 (2002) 2, 382-389
2324 Observing structure, function and assembly of single proteins by AFM
D. J. Muller, H. Janovjak, T. Lehto, L. Kuerschner, K. Anderson
Prog. Biophys. Mol. Biol., 79 (2002) 1-3, 1-43
2192 Imaging real-time aggregation of amyloid beta protein (1-42) by atomic force microscopy
A. Parbhu, H. Lin, J. Thimm, R. Lal
Peptides, 23 (2002) 7, 1265-1270
2276 Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering
S. B. Fowler, R. B. Best, J. L. Toca Herrera, T. J. Rutherford, A. Steward, E. Paci, M. Karplus, J. Clarke
J. Mol. Biol., 322 (2002) 4, 841-849
2194 Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin
A. Philippsen, W. Im, A. Engel, T. Schirmer, B. Roux, D. J. Muller
Biophys. J., 82 (2002) 3, 1667-1676
2227 Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy
A. C. Lin, M. C. Goh
Proteins, 49 (2002) 3, 378-384
2202 In situ atomic force microscopy of partially demineralized human dentin collagen fibrils
S. Habelitz, M. Balooch, S. J. Marshall, G. Balooch, G. W. Marshall, Jr.
J. Struct. Biol., 138 (2002) 3, 227-236
2489 The mechanical hierarchies of fibronectin observed with single-molecule AFM
A. F. Oberhauser, C. Badilla-Fernandez, M. Carrion-Vazquez, J. M. Fernandez
J. Mol. Biol., 319 (2002) 2, 433-447
2563 Improvements in atomic force microscopy protocols for imaging fibrous proteins
P. Hallett, L. Tskhovrebova, J. Trinick, G. Offer, M. J. Miles
J. Vac. Sci. Technol., B14 (1996) 2, 1444-1448
2642 The study of protein mechanics with the atomic force microscope
Fisher T.E., Oberhauser A.F., Carrion-Vazquez M., Marszalek P.E., Fernandez J.M.
Trends Biochem. Sci., 24 (1999) 379-384