SPM Applications In Biology

The last two decades of using AFM and related Scanning Probe Microscopy techniques in biology show that their popularity and power continue growing. Numerous reviews, both comprehensive and specialized, cited in the reference list and articles devoted to biological applications of Atomic Force Microscopy prove this fact. The state of today's activities in this field can be seen from the collection of latest abstracts from the Biophysical Journal: What Are Biologists Working On Using SPM?

In biology Atomic Force Microscopy has traditionally been used to measure topography [22, 357, 721, 905, 959, 1045, 1068, 1574, 1575, 1584] and nanomechanical properties of biological samples, such as elasticity [256, 327, 360, 593, 676, 992, 995, 1569, 1736]. Now the applications of AFM probing are far beyond these initial ones. AFM has been found to be useful in pharmacology [346, 505] biotechnology [360], microbiology [1755, 1768], structural biology [1764, 1787], molecular biology [1375], genetics [1568, 1781] and other biology related fields.

The variety of objects investigated using Atomic Force Microscopy in biology spans from the smallest biomolecules encompassing proteins, lipids, DNA, RNA and other nucleic acids, to the rather "big" human's platelets, viruses and living cells. The main advantage of AFM in biology as compared to other methods is that it usually does not require specific sample preparation and allows measuring in most of the physiological conditions biological objects are susceptible to. It is the most universal method in the sense that all the media including vacuum can be used for probing. The reason for choosing liquid media instead of air is not only because it is the natural physiological media for biological objects, but also due to the fact that all the interaction forces including unwanted ones are an order of magnitude smaller than in air allowing, for instance, to raise the resolution and to diminish image distortion. Although, it should be noted that measuring in liquids is much more complicated than imaging in air [357].

Because of their softness it is recommended that biological samples be investigated in intermittent-contact or tapping mode AFM. In this mode the probability of sample damage is lowered drastically compared to imaging in contact mode not excluding, though, it's displacement. Nevertheless, contact mode imaging in the beginning of the 21th century successfully deals with extralow loadings in the order of 100 pN [381]. What is more, the quality of AFM apparatus as well as the imaging techniques and data acquisition improves year after year [22, 905, 979, 984, 1045, 1569, 1572, 1575].

Along with direct imaging of biological objects Atomic Force Microscopy plays a significant role among numerous biophysical methods for the investigation of specific and non-specific molecular interactions that all the biological processes are governed by [1713, 1728]. These are the protein-protein, enzyme-substrate, antigen-antibody, receptor-ligand interactions, drug-target associations, a diverse number of biocomplexes and many others. Being an instrument of choice for the investigation of biomolecule activities Atomic Force Microscopy is an ideal means for the visualization and real-time imaging of nucleation and crystallization of macromolecular crystals [118, 545, 546, 1703], processes involved in the cell living cycle [357, 959, 960, 968, 969, 975, 979, 992, 1068], and the functioning of biomolecules [427, 1765].

Because of its capability to monitor biomolecular interactions on biosensor surfaces, Atomic Force Microscopy is applied successfully in biosensing applications [346, 355, 1181, 1592]. The extended force range (theoretical limit estimated to be below 1fN [360]) allows reaching unprecedented sensitivity at the nanoscale. For example, a special biosensor can be manufactured that is capable of detecting biological species at concentrations of 10-18mol/l, which is approximately eight orders of magnitude more sensitive compared with conventional techniques [360].

The high sensitivity achieved so far allows force measurements between individual biomolecules and complexes that have been substantial technical challenge a decade ago. For example, single-molecule atomic force spectroscopy has become standard practice. These advances give rise to developing a novel direction in biosensing techniques based on AFM as mentioned above. Actually, the AFM cantilever itself can be used to serve as the main sensitive element of biosensors. Such force measurements are usually performed using the AFM probe functionalized with a biomolecule of interest and its complementary molecule immobilized onto the sample surface [346, 1725].

AFM by itself is, no doubt, a powerful instrument to explore micro- and nanoscopic biological objects. But since the early days of AFM the necessity of combining with other methods have been considered (see for instance [997]). For example, in biological applications the initial location of the target object is of great importance and the task of determining its position can be easily performed by conventional optical or fluorescence microscopy. It prevents from unnecessary scans and tip contamination while locating, say, cells or subcell organelles such as chromosomes.

It is not much of an exaggeration to say that the AFM prospects in biology are immense and who knows, may be some day in the future gene engineering will be provided with a useful tool for easy manipulating of genes inside a chromosome.

A cumulative list of articles devoted to biological applications of Atomic Force Microscopy and placed in the Biology section including subsections can be downloaded in PDF format:

Biological Applications of Atomic Force Microscopy (Updated on January 14, 2003)

By now the amount of articles in the list exceeds 1000.

Please send all comments and suggestions concerning these pages to info@mikromasch.com.

ID Reference list
22 Contact resonance imaging - a simple approach to improve the resolution of AFM for biological and polymeric materials
D. Dunlap, A. Cattelino, I. de Curtis, F. Valtorta
FEBS Letters, 382 (1996), 1-2, 65-72
118 AFM studies of the nucleation and growth mechanisms of macromolecular crystals
Y.G. Kuznetsov, A.J. Malkin, A. McPherson
Journal of Crystal Growth, 196 (1999), 2-4, 489-502
256 STM and AFM of bio/organic molecules and structures
A. Ikai
Surface Science Reports, 26 (1997), 261-332
327 Application of atomic force microscopy to the study of micromechanical properties of biological materials
W. Richard Bowen, Robert W. Lovitt, Chris J. Wright
Biotechnology Letters, 22 (2000), 893-903
346 Atomic force microscopy as a novel pharmacological tool1
R.D.S. Pereira
Biochemical Pharmacology, 62 (2001), 975-983
353 Atomic force microscopy for characterization of the biomaterial interface
C.A. Siedlecki, R.E. Marchant
Biomaterials, 19 (1998), 4-5, 441-454
355 Atomic force microscopy for the characterization of immobilized enzyme molecules on biosensor surfaces
Peng Zhang, Weihong Tan
Fresenius' Journal of Analytical Chemistry, 369 (2001), 3/4, 302-307
357 Atomic force microscopy imaging of living cells: progress, problems and prospects
Hong Xing You, Lei Yu.
Methods in Cell Science, 21 (1999), 1, 1-17
360 Atomic force microscopy in analytical biotechnology
S. Allen, M.C. Davies, C.J. Roberts, S.J.B. Tendler, P.M. Williams
Trends in Biotechnology, 15 (1997), 3, 101-105
374 Atomic force microscopy of biomaterials surfaces and interfaces
K.D. Jandt
Surface Science, 491 (2001), 3, 303-332
381 Atomic force microscopy of native purple membrane
D.J. Müller, J.B. Heymann, F. Oesterhelt, C. Möller, H. Gaub, G. Büldt, A. Engel
Biochimica et Biophysica Acta (BBA)/Bioenergetics, 1460 (2000), 1, 27-38
427 Atomic force microscopy: a powerful tool to observe biomolecules at work
Y. Lyubchenko, A. Engel, D. Müller
Trends in Cell Biology, 9 (1999), 2, 77-80
505 Fractal Analysis of Pharmaceutical Particles by Atomic Force Microscopy
Tonglei Li, Kinam Park
Pharmaceutical Research, 15 (1998), 8, 1222-1232
545 In situ atomic force microscopy studies of protein and virus crystal growth mechanisms
A.J. Malkin, Y.G. Kuznetsov, W. Glantz, A. McPherson
Journal of Crystal Growth, 168 (1996), 1-4, 63-73
546 In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization
A.J. Malkin, A. McPherson, Y.G. Kuznetsov
Journal of Crystal Growth, 196 (1999), 2-4, 471-488
593 Measuring elasticity of biological materials by atomic force microscopy
G. Semenza, A. Vinckier
FEBS Letters, 430 (1998), 1-2, 12-16
676 Probing the microelastic properties of nanobiological particles with tapping mode atomic force microscopy
L. Shao, N.J. Tao, R.M. Leblanc
Chemical Physics Letters, 273 (1997), 1-2, 37-41
721 Submolecular resolution of single macromolecules with atomic force microscopy
Z. Shao, D.M. Czajkowsky
FEBS Letters, 430 (1998), 1-2, 51-54
905 Scanning force microscopy in the applied biological sciences
Ziv Reich, Ruti Kapon, Reinat Nevo, Yair Pilpel, Sharon Zmora, Yosef Scolnik
Biotechnology Advances, 19 (2001), 6, 451-485
959 Atomic force microscopy for high-resolution imaging in cell biology
Hoh J.H., Hansma P.K.
Trends Cell Biol 2 (1992), 208-213
960 Imaging of living cells by atomic force microscopy
Henderson E.
Prog Surf Sci 46 (1994), 39-60
961 Biological applications of atomic force microscopy
Lal R., John S.A.
Am. J. Physiol. 266 (1994), C1-C21
968 Atomic force microscopy of renal cells: Limits and prospects
Lesniewska E., Giocondi M-C., Vie V., Finot E., Goudonnet J.P., Le Grimellec C.
Kidney Int 65 (1998), S42-S48
969 Imaging surface and submembranous structures with the atomic force microscope: A study on living cancer cells, fibroblasts and macrophages
Braet F., Seynaeve C., de Zanger R., Wisse E.
J Microsc 190 (1998), 328-338.
975 AFM review study on pox viruses and living cells
Ohnesorge F.M., Horber J.K.H., Haberle W., Czerny C.P., Smith D.P.E., Binning G.
Biophys. J. 73 (1997), 2183-2194
979 An integrated approach to the study of living cells by atomic force microscopy
Nagao E., Dvorak J.A.
J Microsc 191 (1998), 8-19
984 Scan speed limit in atomic force microscopy
Butt H.J., Siedle P., Seifert K., Fendler K., Seeger T., Bamberg E., Weisenhorn A.L., Goldie K., Engel A.
J Microsc 169 (1993), 75-84.
992 Relative microelastic mapping of living cells by atomic force microscopy
A-Hassan E., Heinz W.F., Antonik M.D., D'Costa N.P., Nageswaran S., Schoenenberger C.A., Hoh J.H.
Biophys. J. 74 (1998), 1564-1578
995 Measuring the elastic properties of biological samples with the AFM
Radmacher M.
IEEE Eng Med Biol 16 (1997), 47-57.
997 Combining optical and atomic force microscopy for life sciences research
Vesenka J., Mosher C., Schaus S., Ambrosio L., Henderson E.
Biotechniques 19 (1995), 240-248.
1024 Immobilization strategies for biological scanning probe microscopy
P. Wagner
FEBS Letters, 430 (1998), 1-2, 112-115
1045 Progress in scanning probe microscopy
H.K. Wickramasinghe
Acta Materialia, 48 (2000), 1, 347-358
1053 Scanning probe microscopy of biomolecules and polymeric biomaterials
M.C. Davies, G.J. Leggett, D.E. Jackson, S.J.B. Tendler
Journal of Electron Spectroscopy and Related Phenomena, 81 (1996), 249-268
1068 Studying the surface of soft materials (live cells) at high resolution by scanning probe microscopy: Challenges faced
J.A. DeRose, J.-P. Revel
Thin Solid Films, 331 (1998), 1-2, 194-202
1181 Rapid biochemical detection and differentiation with magnetic force microscope cantilever arrays
R.G. Rudnitsky, E.M. Chow, T.W. Kenny
Sensors and Actuators A: Physical, 83 (2000), 1-3, 256-262
1545 Applications for Atomic Force Microscopy of DNA
Hansma, H. G., M. Bezanilla, D. L. Laney, R. L. Sinsheimer, and P. K. Hansma
Biophys. J. 68 (1995), 1672
1556 Atomic force microscopy of biomolecules
Hansma H. G.
J. Vac. Sci. Technol. B14 (1996) 1390-1394
1568 Potential applications of atomic force microscopy of DNA to the human genome project
Hansma, H. G., and P. K. Hansma
Proc. SPIE - Int. Soc. Opt. Eng. (USA). 1891 (1993), 66-70
1569 Probing biopolymers with the atomic force microscope: a review
Hansma H.G., Pietrasanta L.I., Auerbach I.D., Sorenson C., Golan R., Holden P.A.
Journal of Biomaterials Science. Polymer Edition 11 (2000), 7, 675-683
1571 Recent Advances in Atomic force Microscopy of DNA
Hansma, H. G., R. L. Sinsheimer, J. Groppe, T. C. Bruice, V. Elings, G. Gurley, M. Bezanilla, I. A. Mastrangelo, P. V. C. Hough, and P. K. Hansma
Scanning 15 (1993), 296-299
1572 Recent Highlights from Atomic Force Microscopy of DNA
Biological Structure and Dynamics. Hansma H.G., Pietrasanta L.I., Golan R., Sitko J.C., Viani M., Paloczi G., Smith B.L., Thrower D., Hansma P.K.
Conversation 11 (2000), 271-276
1574 Surface Biology of DNA by Atomic Force Microscopy
Hansma H.G.
Ann. Rev. Physical Chemistry 52 (2001), 71-92
1575 Varieties of imaging with scanning probe microscopes
Hansma H. G.
Proc. Natl. Acad. Sci. USA 96 (1999), 14678--14680
1576 Basement Membrane Macromolecules: Insights from Atomic Force Microscopy
Chen C.H., Hansma H.G.
J. Struct. Biol. 131 (2000) 44-55
1584 Biomolecular imaging with the atomic force microscope
Hansma, H. G., and J. Hoh.
Annual Review of Biophysics and Biomolecular Structure. 23 (1994), 115-139
1585 Biological applications of the AFM: from single molecules to organs
Kasas, S., N. H. Thomson, B. L. Smith, P. K. Hansma, J. Miklossy, and H. G. Hansma.
Int. J. Imaging Systems and Technology. 8 (1997), 151-161
1589 Translating biomolecular recognition into nanomechanics
Fritz J., Baller M.K., Lang H.P., Rothuizen H., Vettiger P., Meyer E., Guntherodt H.-J., Gerber Ch, Gimzewski J.K.
Science, 288 (2000), 316-318
1592 Micromechanical cantilever-based biosensors
R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal
Sensors and Actuators B: 79 (2001), 115-126
1653 Advances in the characterization of supported lipid films with the atomic force microscope
Y.F. Dufrene, G.U. Lee
Biochimica et Biophysica Acta (BBA)/Biomembranes, 1509 (2000), 1-2, 14-41
1375 A relocated technique of atomic force microscopy (AFM) samples and its application in molecular biology
Aiguo Wu, Zhuang Li, Lihua Yu, Hongda Wang and Erkang Wang
Ultramicroscopy, Vol. 92 (2002) 3-4, pp. 201-207
1703 Atomic force microscopy in the study of macromolecular crystal growth
A. McPherson, A. J. Malkin, and Yu. G. Kuznetsov
Annu. Rev. Biophys. Biomol. Struct., 29 (2000) 361 - 410
1713 Biomolecular interactions measured by atomic force microscopy
Oscar H. Willemsen, Margot M. E. Snel, Alessandra Cambi, Jan Greve, Bart G. De Grooth, and Carl G. Figdor
Biophys. J., 79 (2000) 3267 - 3281
1725 A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy
Lutz Schmitt, Markus Ludwig, Hermann E. Gaub, and Robert Tampe
Biophys. J., 78 (2000) 3275 - 3285
1728 From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy
Martin Stark, Clemens Moller, Daniel J. Muller, and Reinhard Guckenberger
Biophys. J., 80 (2001) 3009 - 3018
1736 Determination of elastic moduli of thin layers of soft material using the atomic force microscope
Emilios K. Dimitriadis, Ferenc Horkay, Julia Maresca, Bechara Kachar, and Richard S. Chadwick
Biophys. J., 82 (2002) 2798 - 2810
1755 Atomic force microscopy, a powerful tool in microbiology
Yves F. Dufrene
J. Bacteriol., 184 (2002) 5205 - 5213
1764 Atomic force microscopy in structural biology: from the subcellular to the submolecular
Danie M. Czajkowsky, Hideki Iwamoto, and Zhifeng Shao
J. Electron Microsc. (Tokyo), 49 (2000) 395 - 406
1765 Atomic force microscopy proposes a 'kiss and pull' mechanism for enhancer function
Shige H. Yoshimura, Chikashi Yoshida, Kazuhiko Igarashi, and Kunio Takeyasu
J. Electron Microsc. (Tokyo), 49 (2000) 407 - 413
1768 The application of the atomic force microscope to studies of medically important protozoan parasites
James A. Dvorak, Seiki Kobayashi, Kazuhiro Abe, Tatsushi Fujiwara, Tsutomu Takeuchi, and Eriko Nagao
J. Electron Microsc. (Tokyo), 49 (2000) 429 - 435
1781 The atomic force microscope as a new microdissecting tool for the generation of genetic probes
Thalhammer, S., Stark, R. Muller, S., Wienberg, J. and Heckl, W.M.
J. Struct. Biol. 119 (1997), 232-237
1787 Imaging and manipulation of biological structures with the AFM
Dimitrios Fotiadis, Simon Scheuring , Shirley A. Muller, Andreas Engel and Daniel J. Muller
Micron, 33 (2002), 4, 385-397
1987 Biological cryo atomic force microscopy: a brief review
Z. Shao, Y. Zhang
Ultramicroscopy, 66 (1996) 3-4, 141-152
2355 Progress in the application of scanning probe microscopy to biology
H. X. You, C. R. Lowe
Curr. Opin. Biotechnol., 7 (1996) 1, 78-84
2384 Scanning force microscopy of biological samples
M. Lekka, J. Lekki, A. P. Shoulyarenko, B. Cleff, J. Stachura, Z. Stachura
Pol J Pathol, 47 (1996) 2, 51-55
2432 Striving for atomic resolution in biomolecular topography: the scanning force microscope (SFM)
A. Schaper, T. M. Jovin
Bioessays, 18 (1996) 11, 925-935
2496 The role of scanning probe microscopy in drug delivery research
K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, P. M. Williams
Crit. Rev. Ther. Drug. Carrier. Syst., 13 (1996) 3-4, 225-256
1867 Adsorption of biological molecules to a solid support for scanning probe microscopy
D. J. Muller, M. Amrein, A. Engel
J. Struct. Biol., 119 (1997) 2, 172-188
2161 High resolution imaging of native biological sample surfaces using scanning probe microscopy
A. Engel, C. A. Schoenenberger, D. J. Muller
Current Opinion in Structural Biology, 7 (1997) 2, 279-284
2184 Imaging of individual biopolymers and supramolecular assemblies using noncontact atomic force microscopy
T. M. McIntire, D. A. Brant
Biopolymers, 42 (1997) 2, 133-146
2381 Scanning force microscopy for imaging biostructures at high-resolution
A. Diaspro, R. Rolandi
Eur. J. Histochem., 41 (1997) 1, 7-16
2399 Scanning probe microscopy for the characterization of biomaterials and biological interactions
M. D. Garrison, B. D. Ratner
Ann. N. Y. Acad. Sci., 831 (1997) 101-113
2451 Subpiconewton intermolecular force microscopy
M. Tokunaga, T. Aoki, M. Hiroshima, K. Kitamura, T. Yanagida
Biochemical and Biophysical Research Communications, 231 (1997) 3, 566-569
2124 Evaluating the interaction of bacteria with biomaterials using atomic force microscopy
A. Razatos, Y. L. Ong, M. M. Sharma, G. Georgiou
J. Biomater. Sci. Polym. Ed., 9 (1998) 12, 1361-1373
1890 Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy
K. D. Costa, F. C. Yin
J. Biomech. Eng., 121 (1999) 5, 462-471
1921 Atomic force microscopy imaging of dried or living bacteria
D. Robichon, J. C. Girard, Y. Cenatiempo, J. F. Cavellier
C. R. Acad. Sci. III, 322 (1999) 8, 687-693
1974 Atomic force microscopy: a forceful way with single molecules
A. Engel, H. E. Gaub, D. J. Muller
Curr. Biol., 9 (1999) 4, R133-R136
2020 Chemical and biochemical analysis using scanning force microscopy
H. Takano, J. R. Kenseth, S. S. Wong, J. C. O'Brien, M. D. Porter
Chem. Rev., 99 (1999) 10, 2845-2890
2023 Chemical Force Microscopy Study of Adhesion and Friction between Surfaces Functionalized with Self-Assembled Monolayers and Immersed in Solvents
S. C. Clear, P. F. Nealey
J. Colloid. Interface. Sci., 213 (1999) 1, 238-250
2164 High speed atomic force microscopy of biomolecules by image tracking
S. J. van Noort, K. O. van Der Werf, B. G. de Grooth, J. Greve
Biophys. J., 77 (1999) 4, 2295-2303
2314 Novel polymer substrates for SFM investigations of living cells, biological membranes, and proteins
A. Linder, U. Weiland, H. J. Apell
J. Struct. Biol., 126 (1999) 1, 16-26
2352 Probing Nanometer Structures with Atomic Force Microscopy
Z. Shao
News Physiol. Sci., 14 (1999) 142-149
2493 The micro-mechanics of single molecules studied with atomic force microscopy
T. E. Fisher, P. E. Marszalek, A. F. Oberhauser, M. Carrion-Vazquez, J. M. Fernandez
J. Physiol., 520 (1999) 1, 5-14
1900 Aspects of the physical chemistry of polymers, biomaterials and mineralised tissues investigated with atomic force microscopy (AFM)
K. D. Jandt, M. Finke, P. Cacciafesta
Colloids. Surf. B. Biointerfaces, 19 (2000) 4, 301-314
1930 Atomic force microscopy measurements of intermolecular binding strength
G. N. Misevic
Methods Mol. Biol., 139 (2000) 111-117
2021 Chemical force microscopy of microcontact-printed self-assembled monolayers by pulsed-force-mode atomic force microscopy
Y. Okabe, M. Furugori, Y. Tani, U. Akiba, M. Fujihira
Ultramicroscopy, 82 (2000) 1-4, 203-212
2299 Monitoring biomolecular interactions by time-lapse atomic force microscopy
M. Stolz, D. Stoffler, U. Aebi, C. Goldsbury
J. Struct. Biol., 131 (2000) 3, 171-180
2358 Quantification of bacterial adhesion forces using atomic force microscopy (AFM)
H. H. Fang, K. Y. Chan, L. C. Xu
J. Microbiol. Methods, 40 (2000) 1, 89-97
2436 Structural biology with carbon nanotube AFM probes
A. T. Woolley, C. L. Cheung, J. H. Hafner, C. M. Lieber
Chem. Biol., 7 (2000) 11, R193-R204
2485 The importance of molecular structure and conformation: learning with scanning probe microscopy
B. L. Smith
Prog. Biophys. Mol. Biol., 74 (2000) 1-2, 193-113
1897 Application of atomic force microscopy to study initial events of bacterial adhesion
A. Razatos
Methods Enzymol., 337 (2001) 276-285
1907 Atomic force microscopy and its related techniques in biomedicine
T. Ushiki
Ital. J. Anat. Embryol., 106 (2001) 2 Suppl 1, 3-8
1911 Atomic force microscopy applications in macromolecular crystallography
A. McPherson, A. J. Malkin, Y. G. Kuznetsov, M. Plomp
Acta Crystallogr. D: Biol. Crystallogr., 57 (2001) 8, 1053-1060
1947 Atomic force microscopy of macromolecular interactions
C. M. Yip
Current Opinion in Structural Biology, 11 (2001) 5, 567-572
2024 Chemical force microscopy with active enzymes
M. Fiorini, R. McKendry, M. A. Cooper, T. Rayment, C. Abell
Biophys. J., 80 (2001) 5, 2471-2476
2042 Comparative studies of bacteria with an atomic force microscopy operating in different modes
A. V. Bolshakova, O. I. Kiselyova, A. S. Filonov, O. Y. Frolova, Y. L. Lyubchenko, I. V. Yaminsky
Ultramicroscopy, 86 (2001) 1-2, 121-128
2313 Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part I. Atomic force microscopy
K. Balashev, T. R. Jensen, K. Kjaer, T. Bjornholm
Biochimie, 83 (2001) 5, 387-397
1896 Application of atomic force microscopy to studies of surface processes in virus crystallization and structural biology
A. J. Malkin, M. Plomp, A. McPherson
Acta Crystallogr. D: Biol. Crystallogr., 58 (2002) 1, 1617-1621
1988 Biomolecular imaging using atomic force microscopy
D. J. Muller, K. Anderson
Trends in Biotechnology, 20 (2002) 8, S45-S49
1990 Biotechnological applications of atomic force microscopy
G. Charras, P. Lehenkari, M. Horton
Methods Cell Biol., 68 (2002) 171-191
2058 Cryo-atomic force microscopy
S. Sheng, Z. Shao
Methods Cell Biol., 68 (2002) 243-256
2280 Methods for biological probe microscopy in aqueous fluids
J. H. Kindt, J. C. Sitko, L. I. Pietrasanta, E. Oroudjev, N. Becker, M. B. Viani, H. G. Hansma
Methods Cell Biol., 68 (2002) 213-229
2455 Supported lipid bilayers as effective substrates for atomic force microscopy
D. M. Czajkowsky, Z. Shao
Methods Cell Biol., 68 (2002) 231-241
2625 Dynamic force microscopy imaging of native membranes
F. Kienberger, C. Stroh, G. Kada, R. Moser, W. Baumgartner, V. Pastushenko, C. Rankl, U. Schmidt, H. Mueller, E. Orlova, C. LeGrimellec, D. Drenckhahn, D. Blaas, P. Hinterdorfer
Ultramicroscopy, 97 (2003) 229-237